Alvaro Carreno;Mariusz Malinowski;Marcelo A. Perez;Jingyu Ding
{"title":"Effects of Grid Voltage and Load Unbalances on the Efficiency of a Hybrid Distribution Transformer","authors":"Alvaro Carreno;Mariusz Malinowski;Marcelo A. Perez;Jingyu Ding","doi":"10.1109/OJIES.2024.3486353","DOIUrl":"https://doi.org/10.1109/OJIES.2024.3486353","url":null,"abstract":"The hybrid distribution transformer (HDT) has been proposed as a solution to cope with the low short-circuit capability of solid-state transformers. Among the available HDT configurations, the one that connects a series/parallel converter on the primary/secondary side can be highlighted. This configuration improves the voltage and current waveforms on the transformer and regulates the voltage supplied to the ac microgrid. Nonetheless, this HDT suffers from a circulating active power flow (CAPF), affecting its efficiency. Moreover, during the unbalanced operation of the HDT, an additional CAPF component exists. Depending on the grid and load conditions and whether the parallel converter compensates for the load unbalances, the CAPF can either increase or decrease. Although the CAPF can be eliminated by employing the dc port of the HDT, it is not always possible to extract energy from it. This work contributes with the analysis of the operation of an HDT under an unbalanced grid voltage and load, along with an extended CAPF model that considers the losses of the HDT. The effect of the unbalanced components on the CAPF is analyzed, and the conditions in which the CAPF is minimized are obtained. Nonetheless, in most scenarios, a minimum CAPF does not coincide with the maximum efficiency of the HDT. Therefore, the conditions for achieving maximum efficiency are also determined. A simpler suboptimal condition is obtained due to the complexity of requiring precise parameters and operating conditions of the HDT. Moreover, the suboptimal condition allows for improving the power quality of the HDT. Therefore, a certain amount of CAPF is desired to operate the HDT properly.","PeriodicalId":52675,"journal":{"name":"IEEE Open Journal of the Industrial Electronics Society","volume":null,"pages":null},"PeriodicalIF":5.2,"publicationDate":"2024-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10735355","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142595060","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Irati Ibanez-Hidalgo;Rodrigo H. Cuzmar;Alain Sanchez-Ruiz;Angel Perez-Basante;Asier Zubizarreta;Salvador Ceballos;Ricardo P. Aguilera
{"title":"Enhanced PI Control Based SHC-PWM Strategy for Active Power Filters","authors":"Irati Ibanez-Hidalgo;Rodrigo H. Cuzmar;Alain Sanchez-Ruiz;Angel Perez-Basante;Asier Zubizarreta;Salvador Ceballos;Ricardo P. Aguilera","doi":"10.1109/OJIES.2024.3483293","DOIUrl":"https://doi.org/10.1109/OJIES.2024.3483293","url":null,"abstract":"Low-switching frequency modulation techniques, such as selective harmonic control-pulsewidth modulation (SHC-PWM), have been recently proposed for high-power medium-voltage active power filter (APF) application. Compared to high-switching frequency modulation techniques, these methods reduce the switching losses and avoid derrating the current. This results in enhanced power density and efficiency, and facilitates a reduction in costs. However, the low-switching frequency tends to worsen the closed-loop dynamic response and system stability if countermeasures are not taken during the design process of the closed-loop controllers. Moreover, the digital filter used to obtain the harmonic components of the measured signals introduces a delay that can affect the stability and performance of the closed-loop control. This work presents different methods to improve the dynamic response of traditional proportional-integral based closed-loop controllers, which are applied along with SHC-PWM for high-power medium-voltage APFs. A current predictor that substitutes the traditional cross-coupling terms and a Smith predictor are proposed to compensate the delay introduced by the digital filters. In addition, different digital filter implementations are analyzed and compared in terms of dynamic and stationary response with the aim of improving the harmonic estimation from the measured signals. Experimental results for a 3-level NPC converter are provided to verify the effectiveness of the control.","PeriodicalId":52675,"journal":{"name":"IEEE Open Journal of the Industrial Electronics Society","volume":null,"pages":null},"PeriodicalIF":5.2,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10726713","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142565498","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A Detailed Study on Algorithms for Predictive Maintenance in Smart Manufacturing: Chip Form Classification Using Edge Machine Learning","authors":"Alessia Lazzaro;Doriana Marilena D'Addona;Massimo Merenda","doi":"10.1109/OJIES.2024.3484006","DOIUrl":"https://doi.org/10.1109/OJIES.2024.3484006","url":null,"abstract":"Industrial and technological evolution has led to the identification of different techniques and strategies that can best adapt to the needs of Manufacturing Industry 4.0. As industrial production has become more automated, the need for more efficient maintenance strategies has increased. Today, among the possible, several applications demonstrate how the Predictive Maintenance (PdM) strategy is the best performing. In fact, PdM makes it possible to predict an impending failure with high accuracy in order to intervene before failure occurs. This work focuses on the application of PdM technique in order to predict the type of chips produced by a lathe through a machine learning algorithm. Moreover, being our application a delay-sensitive one, to drastically decrease the time delay in prediction, our solution proposes the combination of PdM with the Edge Computing paradigm. To simulate this paradigm, the chosen machine learning models were deployed on STM microcontrollers obtaining both high accuracy (98%) and an inference time in the order of milliseconds.","PeriodicalId":52675,"journal":{"name":"IEEE Open Journal of the Industrial Electronics Society","volume":null,"pages":null},"PeriodicalIF":5.2,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10726785","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142565637","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"On Robust Assembly of Flexible Flat Cables Combining CAD and Image Based Multiview Pose Estimation and a Multimodal Robotic Gripper","authors":"Junbang Liang;Joao Buzzatto;Bryan Busby;Haodan Jiang;Saori Matsunaga;Rintaro Haraguchi;Toshisada Mariyama;Bruce A. MacDonald;Minas Liarokapis","doi":"10.1109/OJIES.2024.3467171","DOIUrl":"https://doi.org/10.1109/OJIES.2024.3467171","url":null,"abstract":"In robotic assembly of flexible flat cables (FFCs), a unique challenge is the inherent difficulty in manipulating such flexible objects compared to their rigid counterparts and the precise estimation of the cable pose. This work proposes a framework that combines object pose estimation using computer-aided design (CAD) models and multiview fusion to perform precise FFC assembly. Our key insight is that a multiview fusion combined with pretrained 6-D pose estimation models offers a more flexible and precise object pose estimation. In a series of experiments involving FFC insertion tasks requiring assembly tolerances down to 0.1 mm, our approach achieves an insertion success rate of 399 out of 400 total attempts. Furthermore, the assembly tasks include the releasing and securing of FFCs from cable connectors, where the system is successful in 200 out of 200 trials. We have also demonstrated the generalization capability of the methodology by successfully completing insertion tasks for common electronic cables like DisplayPort and USB-A, achieving 199 successes in 200 trials. The results not only validate the feasibility of the proposed approach, but also demonstrate its robustness for real-world industrial applications.","PeriodicalId":52675,"journal":{"name":"IEEE Open Journal of the Industrial Electronics Society","volume":null,"pages":null},"PeriodicalIF":5.2,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10693648","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142397089","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Praneet Amitabh;Dimitar Bozalakov;Frederik De Belie
{"title":"Hybrid Modeling of an Induction Machine to Support Bearing Diagnostics","authors":"Praneet Amitabh;Dimitar Bozalakov;Frederik De Belie","doi":"10.1109/OJIES.2024.3461949","DOIUrl":"https://doi.org/10.1109/OJIES.2024.3461949","url":null,"abstract":"In this article, a novel hybrid model of an induction machine is proposed that can emulate the response of a machine with a faulty bearing. The idea behind developing such a topology is to have the response quite close to that from a real asset while keeping it computationally efficient. The aim is to develop an accurate and efficient model, akin to digital twins, which have the potential for real-time operation. Therefore, the model is divided into two parts. One is a physics-based model that takes fundamental equations and motor construction parameters to yield an intermediate response. All the major parameters are taken into account such that the fundamental component comes quite close to that of the real asset and the bearing fault signature comes in the same order. These signatures are quite small and some small parasitic effects or the assumptions taken while simplifying the model might not impact the fundamental component that much but they alter the signature's amplitude quite significantly. One way is to model all the parasitic effects, which might increase the computation effort significantly. Another way is to take all the parasitic effects altogether and bridge the difference using a statistical approach which is developed using experimental data. Therefore, the current measurements were taken for several bearings with different fault severity. These measurements are processed and quantified such that the net outcome can express the evolution of the signature with increasing fault severity. The same is done for the data generated using the physics-based model. Finally, the difference in the responses is reduced using the neural network such that it can mimic real-world machine behavior closely. The analytical model followed by statistical adjustment overall is considered a hybrid model. The ultimate goal of this methodology is to generate extensive datasets encompassing diverse operating conditions that can be used further to estimate the health of the bearing and possibly be used for training predictive algorithms to estimate bearing RUL in motors. The proposed methodology is developed for the machine operating at 1000 and 1500 RPM and is validated for three different operating speeds.","PeriodicalId":52675,"journal":{"name":"IEEE Open Journal of the Industrial Electronics Society","volume":null,"pages":null},"PeriodicalIF":5.2,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10681032","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142452675","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Model-Free Predictive Current Controller for Common Mode Voltage Stabilization by Finite odd Virtual Vector set","authors":"Majid Akbari;S. Alireza Davari;Reza Ghandehari;Freddy Flores-Bahamonde;Jose Rodriguez","doi":"10.1109/OJIES.2024.3457835","DOIUrl":"10.1109/OJIES.2024.3457835","url":null,"abstract":"Reducing the common mode voltage (CMV) fluctuations is crucial in transformer-less (T-less) converters. The modulation modification-based methods inherently increase the steady-state error of the compared currents due to the reduced number of voltage vectors. This error can significantly raise the total harmonic distortion (THD) output current of the inverter. This research presents a strategy of odd virtual vectors based on model-free predictive control using the extended state observer (ESO) to fix the CMV fluctuations and a significant decrease in the THD of the output current. This means the number of CMV stabilizing vectors increases with the linear combination of odd voltage vectors. The proposed method has two advantages over CMV fluctuation reduction schemes that are modulation modification-based: simultaneous control of CMV stabilization and THD reduction in T-less converters, and independence of the controller from system variables and parameters, making it a robust predictive control method. The practical results show that the proposed method, in addition to the complete CMV stabilization and the reduction of the current THD, is completely robust to the changes in the parameters of the ultralocal model and ESO compared to the model-based solutions.","PeriodicalId":52675,"journal":{"name":"IEEE Open Journal of the Industrial Electronics Society","volume":null,"pages":null},"PeriodicalIF":5.2,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10675355","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142175875","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Unsupervised and Semisupervised Machine Learning Frameworks for Multiclass Tool Wear Recognition","authors":"Maryam Assafo;Peter Langendoerfer","doi":"10.1109/OJIES.2024.3455264","DOIUrl":"10.1109/OJIES.2024.3455264","url":null,"abstract":"Tool condition monitoring (TCM) is crucial to ensure good quality products and avoid downtime. Machine learning has proven to be vital for TCM. However, existing works are predominately based on supervised learning, which hinders their applicability in real-world manufacturing settings, where data labeling is cumbersome and costly with in-service machines. Additionally, the existing unsupervised solutions mostly handle binary decision-based TCM which is unable to fully reflect the dynamics of tool wear progression. To address these issues, we propose different unsupervised and semisupervised five-class tool wear recognition frameworks to handle fully unlabeled and partially labeled data, respectively. The underlying methods include Laplacian score, sparse autoencoder (SAE), stacked SAE (SSAE), self-organizing map, Softmax, support vector machine, and random forest. For the semisupervised frameworks, we considered designs where labeled data influence only feature learning, classifier building, or both. We also investigated different training configurations of SSAE regarding the supervision level. We applied the frameworks on two run-to-failure datasets of milling tools, recorded using a microphone and an accelerometer. Single sensor and multisensor data under different percentages of labeled training data were considered in the evaluation. The results showed which of the frameworks led to the best predictive performance under which data settings, and highlighted the significance of sensor fusion and discriminative feature representations in combating the unavailability and scarcity of labels, among other findings. The highest macro-F1 achieved for the two datasets with fully unlabeled data reached 87.52% and 75.80%, respectively, and over 90% when only 25% of the training observations were labeled.","PeriodicalId":52675,"journal":{"name":"IEEE Open Journal of the Industrial Electronics Society","volume":null,"pages":null},"PeriodicalIF":5.2,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10668405","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142175872","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A Functional and Practical Taxonomy for the Industrial Implementation of Highly Automated Reverse Manufacturing Cells","authors":"Annagiulia Morachioli;Vladimir Sivtsov;Nicolas Rojas;Fabio Bonsignorio","doi":"10.1109/OJIES.2024.3453900","DOIUrl":"10.1109/OJIES.2024.3453900","url":null,"abstract":"While it is a widespread understanding that the sustainability of the global economy requires a transition to a circular economy paradigm where a growing share of the raw materials resources used for the manufacturing of the products are recycled when products reach their end-of-life, still this much-needed transition faces organizational and technical challenges. The key technical and economic bottlenecks are in the automation of disassembly. In this article, we propose a viable functional framework for the systematic analysis, design, and implementation of disassembly cells. This framework consists of two main parts: a systematic categorization of disassembly tasks and a modular and flexible hardware (HW)/software (SW) architecture of a disassembly cell able to implement the disassembly tasks. We analyze and categorize human manipulation when disassembling a common object of daily working activities as a new companion concept to the more common concept of daily life activities. We tested and validated our methodology on the disassembly of a car suspension.","PeriodicalId":52675,"journal":{"name":"IEEE Open Journal of the Industrial Electronics Society","volume":null,"pages":null},"PeriodicalIF":5.2,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10666886","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142175874","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Thales Augusto Fagundes;Guilherme Henrique Favaro Fuzato;Lucas Jonys Ribeiro Silva;Augusto Matheus dos Santos Alonso;Juan C. Vasquez;Josep M. Guerrero;Ricardo Quadros Machado
{"title":"Battery Energy Storage Systems in Microgrids: A Review of SoC Balancing and Perspectives","authors":"Thales Augusto Fagundes;Guilherme Henrique Favaro Fuzato;Lucas Jonys Ribeiro Silva;Augusto Matheus dos Santos Alonso;Juan C. Vasquez;Josep M. Guerrero;Ricardo Quadros Machado","doi":"10.1109/OJIES.2024.3455239","DOIUrl":"10.1109/OJIES.2024.3455239","url":null,"abstract":"Microgrids (MGs) often integrate various energy sources to enhance system reliability, including intermittent methods, such as solar panels and wind turbines. Consequently, this integration contributes to a more resilient power distribution system. In addition, battery energy storage system (BESS) units are connected to MGs to offer grid-supporting services, such as peak shaving, load compensation, power factor quality, and operation during source failures. In this context, an energy management system (EMS) is necessary to incorporate BESS in MGs. Consequently, state-of-charge (SoC) equalization is a common approach to address EMS requirements and balance the internal load among BESS units in MG operation. In this article, we present a comprehensive review of EMS strategies for balancing SoC among BESS units, including centralized and decentralized control, multiagent systems, and other concepts, such as designing nonlinear strategies, optimal algorithms, and categorizing agents into clusters. Moreover, in this article, we discuss alternatives to improve EMS and strategies regarding the topology of power converters, including redundancy-based topology, modular multilevel converter, cascaded-based converter, and hybrid-type systems. In addition, this article explores optimization processes aimed at reducing operational costs while considering SoC equalization. Finally, second-life BESS units are explored as an emerging topic, focusing on their operation within specific power converters topologies to achieve SoC balance.","PeriodicalId":52675,"journal":{"name":"IEEE Open Journal of the Industrial Electronics Society","volume":null,"pages":null},"PeriodicalIF":5.2,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10666276","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142175873","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Real-Time Cyber-Physical Digital Twin for Low Earth Orbit Satellite Constellation Network Enhanced Wide-Area Power Grid","authors":"Tianshi Cheng;Tong Duan;Venkata Dinavahi","doi":"10.1109/OJIES.2024.3454010","DOIUrl":"10.1109/OJIES.2024.3454010","url":null,"abstract":"Low Earth orbit (LEO) satellite networks, such as SpaceX's Starlink, offer enhanced communication potential for contemporary power grid measurement and control. Yet, the dynamic nature of these networks complicates their modeling and simulation. This study introduces a modular, data-oriented digital twin framework for real-time simulation of wide-area ac–dc grids with LEO satellite networks. The framework integrates RustSat for satellite tracking, SatSDN with MiniNet for SDN simulations, and entity-component-system (ECS)-Grid for real-time power system simulation. It features a data-centric design using an ECS framework with a structure-of-arrays memory layout, optimizing cache efficiency and computational performance, and offers high extensibility for interdisciplinary simulations. This marks the initial effort to develop a digital twin for real-time co-simulation of large-scale power systems and LEO satellite constellation networks. Evaluations on a wide-area synthetic ac–dc system with multiple satellite network types confirm the efficiency and precision of our approach, underscoring its potential in bridging LEO satellite networks with power system applications.","PeriodicalId":52675,"journal":{"name":"IEEE Open Journal of the Industrial Electronics Society","volume":null,"pages":null},"PeriodicalIF":5.2,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10663871","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142175876","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}