{"title":"Concurrent Deterministic Execution Semantics for IEC 61499-Based OT–IT Convergence Industrial Edge Applications","authors":"Wenbin Dai;Shang Gao;Kaiyun Qin;Chuanyang Yu;Dongdong Zhang;Likuan Zhang;Hui Zhang","doi":"10.1109/OJIES.2025.3578861","DOIUrl":null,"url":null,"abstract":"Industrial edge computing provides new possibilities for traditional industrial automation systems. With massive computing, storage, and communication resources equipped with devices on the shop floor, a typical edge device can simultaneously handle multiple real-time and non-real-time tasks. Also, those tasks may include operation technologies, such as real-time control, and information technologies, such as data processing. Using a generic modeling language to design those new industrial edge applications becomes a challenge for site engineers. This paper proposes the IEC 61499 standard for operation and information technology convergence for industrial edge applications. The concurrent execution semantics of IEC 61499 function blocks are defined to support multiple applications simultaneously. The event scheduling rules are investigated to ensure the determinism of parallel executions of function block networks. Finally, a case study is provided for the performance analysis of the proposed concurrent execution semantics.","PeriodicalId":52675,"journal":{"name":"IEEE Open Journal of the Industrial Electronics Society","volume":"6 ","pages":"982-993"},"PeriodicalIF":4.3000,"publicationDate":"2025-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11030848","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Open Journal of the Industrial Electronics Society","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/11030848/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Industrial edge computing provides new possibilities for traditional industrial automation systems. With massive computing, storage, and communication resources equipped with devices on the shop floor, a typical edge device can simultaneously handle multiple real-time and non-real-time tasks. Also, those tasks may include operation technologies, such as real-time control, and information technologies, such as data processing. Using a generic modeling language to design those new industrial edge applications becomes a challenge for site engineers. This paper proposes the IEC 61499 standard for operation and information technology convergence for industrial edge applications. The concurrent execution semantics of IEC 61499 function blocks are defined to support multiple applications simultaneously. The event scheduling rules are investigated to ensure the determinism of parallel executions of function block networks. Finally, a case study is provided for the performance analysis of the proposed concurrent execution semantics.
期刊介绍:
The IEEE Open Journal of the Industrial Electronics Society is dedicated to advancing information-intensive, knowledge-based automation, and digitalization, aiming to enhance various industrial and infrastructural ecosystems including energy, mobility, health, and home/building infrastructure. Encompassing a range of techniques leveraging data and information acquisition, analysis, manipulation, and distribution, the journal strives to achieve greater flexibility, efficiency, effectiveness, reliability, and security within digitalized and networked environments.
Our scope provides a platform for discourse and dissemination of the latest developments in numerous research and innovation areas. These include electrical components and systems, smart grids, industrial cyber-physical systems, motion control, robotics and mechatronics, sensors and actuators, factory and building communication and automation, industrial digitalization, flexible and reconfigurable manufacturing, assistant systems, industrial applications of artificial intelligence and data science, as well as the implementation of machine learning, artificial neural networks, and fuzzy logic. Additionally, we explore human factors in digitalized and networked ecosystems. Join us in exploring and shaping the future of industrial electronics and digitalization.