Xiang Yin;Jinhua She;Jingcheng Guo;Wei Guo;Gang Su
{"title":"Composite Nonlinear Feedback-Based $N$-Order Equivalent-Input-Disturbance Approach","authors":"Xiang Yin;Jinhua She;Jingcheng Guo;Wei Guo;Gang Su","doi":"10.1109/OJIES.2025.3539343","DOIUrl":"https://doi.org/10.1109/OJIES.2025.3539343","url":null,"abstract":"The equivalent-input-disturbance (EID) approach is effective to suppress the influences of disturbances. However, an EID-based control system suffers from severe fluctuations when an exogenous disturbance appears and disappears, which degrades the transient performance. This article uses the composite nonlinear feedback (CNF) to deal with such a problem and is the first time to do that. Moreover, an <inline-formula><tex-math>$n$</tex-math></inline-formula>-order low-pass filter is designed for the EID approach to improving the disturbance-rejection performance. Combining the <inline-formula><tex-math>$n$</tex-math></inline-formula>-order EID estimator with the CNF, a CNF-based <inline-formula><tex-math>$n$</tex-math></inline-formula>-order EID approach is presented, which not only improves the disturbance-rejection performance but also degrades the fluctuations of the system output when the disturbance appears and disappears. Analyzing the configuration of the <inline-formula><tex-math>$n$</tex-math></inline-formula>-order low-pass filter, this article finds and proves its general mathematical express using the mathematical induction method. Next, the stability analysis is broken into stability conditions of two subsystems. Then, the design of the <inline-formula><tex-math>$n$</tex-math></inline-formula>-order EID estimator is transformed into an optimization problem based on the stability conditions. Finally, the simulation results show the validity and superiority of the presented method.","PeriodicalId":52675,"journal":{"name":"IEEE Open Journal of the Industrial Electronics Society","volume":"6 ","pages":"320-330"},"PeriodicalIF":5.2,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10876605","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143594303","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Strategic Placement of Grid-Forming Inverters Considering Spatiotemporal Dynamics and Composite Stability Index","authors":"Chalitha Liyanage;Lasantha Meegahapola;Inam Nutkani;Mahdi Jalili","doi":"10.1109/OJIES.2025.3538480","DOIUrl":"https://doi.org/10.1109/OJIES.2025.3538480","url":null,"abstract":"The strategic deployment of grid-forming inverters (GFMIs) is imperative to fully leverage their potential to stabilise the grid. Otherwise, poorly planned spatial allocation of GFMIs could threaten the overall system stability under network disturbances. There is an urgent need to develop a robust and multidimensional framework for GFMI placement and evaluation, considering various stability and spatiotemporal aspects of modern power systems. This article addresses this need by introducing a new GFMI placement framework considering spatiotemporal aspects of converter-interfaced renewables and a newly proposed GFMI placement index. The practical range of spatiotemporal aspects with a high probability of occurrence is captured by a reduced number of scenarios derived from a novel hybrid scenario reduction algorithm. Furthermore, the proposed composite GFMI placement index encapsulates distinct aspects of network stability, precisely, frequency and voltage stiffness/stability represented by the frequency deviation index (FDI) and the damping ratio index (DRI), respectively. The performance of the proposed GFMI placement strategy is validated through dynamic simulations by deploying GFMIs at strategic locations in a modified IEEE-39 bus network with converter-interfaced wind generators. The dynamic simulation results revealed that the proposed GFMI ranking system effectively identifies the best GFMI positions in contrast to relying solely on FDI or DRI and, thereby, can assist in preserving the stability of modern power systems with high RE penetration levels.","PeriodicalId":52675,"journal":{"name":"IEEE Open Journal of the Industrial Electronics Society","volume":"6 ","pages":"290-308"},"PeriodicalIF":5.2,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10872818","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143496577","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A Hidden Surveillant Transmission Line Protection Layer for Cyber-Attack Resilience of Power Systems","authors":"Hossein Ebrahimi;Sajjad Golshannavaz;Amin Yazdaninejadi;Edris Pouresmaeil","doi":"10.1109/OJIES.2025.3534588","DOIUrl":"https://doi.org/10.1109/OJIES.2025.3534588","url":null,"abstract":"This article proposes a framework to enhance the resilience of cyber-physical power systems (CPPSs) against cyber-attacks that are capable of bypassing the cyber-based defense mechanisms. To do so, a hidden and local surveillant protection layer is introduced that utilizes isolated measurement devices. Since this surveillance layer relies on local measurements, cyber-attackers cannot affect its performance. However, it requires highly accurate fault detection and classification units (FDCUs) which means requiring additional expenses. Therefore, at the outset, this article employs a deep-learning-based fault detection and classification method using a bidirectional long short-term memory (Bi-LSTM) model to achieve high accuracy with only local transmission line current measurements. The insight and knowledge of the FDCUs are also shared across their neighboring buses through the power-line-carrier communication system. Owing to the need for additional hardware, this system is modeled within a techno-economic framework. The established framework is applied to the CPPS through the evaluation based on distance from average solution (EDAS) method. The EDAS method allows for dynamic adjustments to the integration level of FDCUs based on an analysis of potential cascading failures from various cyber-attack target sets. Extensive simulations conducted on the IEEE 30-bus testbed validate the effectiveness of the proposed framework. The conducted evaluations show that the Bi-LSTM model achieves an impressive accuracy level exceeding 99.66%. This result highlights the robust performance of the proposed surveillant layer and demonstrates its superiority over existing fault detection and classification methods. The scalability of the proposed framework is also confirmed on the IEEE 118-bus testbed.","PeriodicalId":52675,"journal":{"name":"IEEE Open Journal of the Industrial Electronics Society","volume":"6 ","pages":"170-180"},"PeriodicalIF":5.2,"publicationDate":"2025-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10858390","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143361017","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Mahajan Sagar Bhaskar;Seshagiri Rao Vemparala;Dhafer Almakhles;Kumaravel S.;Mahmoud F. Elmorshedy
{"title":"A Scalable High-Voltage Gain DC/DC Converter With Reduced Voltage Stress for DC Microgrid Integration","authors":"Mahajan Sagar Bhaskar;Seshagiri Rao Vemparala;Dhafer Almakhles;Kumaravel S.;Mahmoud F. Elmorshedy","doi":"10.1109/OJIES.2025.3536032","DOIUrl":"https://doi.org/10.1109/OJIES.2025.3536032","url":null,"abstract":"The conventional quadratic boost converter produces a high voltage gain. However, it has drawbacks, like switch voltage stress equal to the output voltage of the converter. This research introduced a novel approach: a scalable high-voltage gain converter strategically designed to address the voltage stress experienced by the switch and achieve a noteworthy reduction. This voltage stress reduction is applicable to all the stages of the proposed converter. It is worth highlighting that the converter ensures continuous input current and is configured with a common input and output ground, further enhancing its practicality. This study delves into an exhaustive steady-state analysis covering both the continuous and discontinuous conduction modes and the nonideal model. Furthermore, a comprehensive comparative analysis is presented, pitting the design and performance of the proposed converter against their recent high-gain counterparts. To evaluate dynamic performance, a small signal model is created. To confirm the dynamic and steady-state performance, a prototype of the proposed converter configuration is fabricated and tested, achieving a 48- to 650-V conversion and delivering 500 W of output power.","PeriodicalId":52675,"journal":{"name":"IEEE Open Journal of the Industrial Electronics Society","volume":"6 ","pages":"277-289"},"PeriodicalIF":5.2,"publicationDate":"2025-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10857397","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143455296","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Automated Cattle Monitoring System for Calving Time Prediction Using Trajectory Data Embedded Time Series Analysis","authors":"Wai Hnin Eaindrar Mg;Thi Thi Zin;Pyke Tin;Masaru Aikawa;Kazayuki Honkawa;Yoichiro Horii","doi":"10.1109/OJIES.2025.3533663","DOIUrl":"https://doi.org/10.1109/OJIES.2025.3533663","url":null,"abstract":"This research introduces an automated system for cattle monitoring and calving time prediction, utilizing trajectory data embedded with time-series analysis. Designed for large-scale farms, our system offers continuous 12-h monitoring, ensuring precise capture of cattle movements. By utilizing time series analysis on the trajectory data, our system predicts calving events in advance, effectively distinguishing between abnormal (requiring human assistance) and normal (not requiring assistance) for each cow. We utilized 360° surveillance cameras to provide comprehensive coverage without disturbing the cattle's natural behavior. We employed tailored versions of the Detectron2 and YOLOv8 models to achieve efficient and precise cattle detection, comparing their performance in terms of missed detections and false detections. For tracking, we used our customized tracking algorithm, which minimizes ID switching and ensures continuous identification even in challenging conditions such as occlusions. While some ID switching errors still occur over extended tracking periods, we integrated tracking and identification to further optimize the handling of track IDs and global IDs. Our system incorporates a 4-h forecasting of cattle movement using Euclidean fluctuating summation (EFS) feature combined with our custom long short-term memory model. Experimental results demonstrate a detection accuracy of 98.70%, tracking and identification accuracy of 99.18%, and forecasting with an average error rate of 14.07%. Furthermore, the system accurately classifies cattle as either normal or abnormal and predicts calving events a 4-h in advance using the EFS feature, comparing its performance with various machine learning algorithms. The system's seamless integration significantly enhances farm management and animal welfare.","PeriodicalId":52675,"journal":{"name":"IEEE Open Journal of the Industrial Electronics Society","volume":"6 ","pages":"216-234"},"PeriodicalIF":5.2,"publicationDate":"2025-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10856329","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143388645","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Angel Perez-Basante;Asier Gil de Muro;Ander Ordono;Salvador Ceballos;Eneko Unamuno;Jon Andoni Barrena
{"title":"A Tuning Method for the Supplementary Voltage Controller of Dual-Side Grid Forming Converters in Distributed Storage Systems","authors":"Angel Perez-Basante;Asier Gil de Muro;Ander Ordono;Salvador Ceballos;Eneko Unamuno;Jon Andoni Barrena","doi":"10.1109/OJIES.2025.3533022","DOIUrl":"https://doi.org/10.1109/OJIES.2025.3533022","url":null,"abstract":"Utility-scale battery energy storage systems (BESSs) are currently being used to provide auxiliary services, such as frequency regulation, peak shaving, or grid balancing, among others. Hybrid ac/dc distribution grids where the BESS systems are connected in the dc side and the dc/ac interface is implemented through a grid forming (GF) converter are currently researched. These solutions combine the benefits given by the dc distribution and the possibility to provide emulated inertia and damping to the system through the use of GF control techniques. This article presents a novel tuning method, based on small signal analysis, for the configuration parameters of a dual-side GF controller. It aims to minimize the dynamic performance difference between the dual-side and ideal GF controllers, thus ensuring that the dual-side GF provides the expected support to the grid in terms of inertia, damping and primary response, while simultaneously controlling the dc voltage. This is achieved through the optimum tuning of the supplementary dc voltage regulator embedded in the dual-side GF controller. Real-time estimation of the optimum controller gains by making use of an artificial neural network is proposed. Simulation and experimental results are presented to validate the method.","PeriodicalId":52675,"journal":{"name":"IEEE Open Journal of the Industrial Electronics Society","volume":"6 ","pages":"202-215"},"PeriodicalIF":5.2,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10850770","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143361124","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Salman Javed;Cristina Paniagua;Imran Javed;Jan van Deventer;Jerker Delsing
{"title":"Run-Time Value Chain Analysis and Cost Accounting via Microservices in Agile Manufacturing","authors":"Salman Javed;Cristina Paniagua;Imran Javed;Jan van Deventer;Jerker Delsing","doi":"10.1109/OJIES.2025.3532664","DOIUrl":"https://doi.org/10.1109/OJIES.2025.3532664","url":null,"abstract":"The rapid evolution of manufacturing processes driven by Industry 4.0 demands systems capable of quickly adapting to dynamic market conditions and evolving customer needs. Agile manufacturing emphasizes flexibility, adaptability, and real-time responsiveness, posing challenges in run-time value chain analysis (VCA), including cost flows and production times. This article presents a novel two-stage VCA approach using an activity-based costing mechanism via microservices to address these challenges. The VCA system enables real-time cost accounting and decision-making, supporting both pre and postproduction VCA, contrasting with traditional methods that rely on historical data. The first stage involves top–down cost calculations from resources to microservices. In contrast, the second focuses on constructing efficient manufacturing activities based on product requirements, allowing for granular analysis of costs and production times across microservices, activities, broader business processes, and finally, cost objects (e.g., customized products, batches of products, or customer invoices). The approach is validated through a proof-of-concept implementation of the VCA system integrated with the Eclipse Arrowhead framework and simulating Fischertechnik indexed line milling, drilling, and conveying operations. The results demonstrate the effectiveness of the proposed method in providing detailed insights into costs and production times, enhancing the efficiency and competitiveness of agile manufacturers.","PeriodicalId":52675,"journal":{"name":"IEEE Open Journal of the Industrial Electronics Society","volume":"6 ","pages":"181-201"},"PeriodicalIF":5.2,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10849611","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143361123","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Immunity of Grid-Forming Control Without Energy Storage to Transient Changes of Grid Frequency and Phase","authors":"Norbert R. Klaes;Jens Fortmann","doi":"10.1109/OJIES.2025.3532517","DOIUrl":"https://doi.org/10.1109/OJIES.2025.3532517","url":null,"abstract":"European grid operators in ENTSO-E and others with a significant amount of inverter-based generation are experiencing a reduction in system inertia and short-circuit power. The changes in these key parameters are due to both an increasing number of inverter-based resources and also STATCOMS and HVDC terminals operating in a grid-following mode. Grid-forming control is a promising technology for renewable energy resources to provide appropriate grid support. However, wind energy and photovoltaic units cannot increase their active power output when operating in a maximum power point mode, as it would be needed for full grid-forming operation. Both operating at less than optimum power output or adding storage would increase the cost of generation. This article proposes extensions to the grid-forming control of inverter-based energy resources without energy storage. This would limit grid supporting nature for positive frequency or phase changes only. The proposed extensions give grid-forming control the necessary immunity to negative frequency or phase changes without the need to rely on a fast phase-locked loop or fast current control loops. This proposed control scheme has been used to evaluate the response to grid disturbances given in the ENTSO-E Phase I report of the task force grid-forming control published in April 2024.","PeriodicalId":52675,"journal":{"name":"IEEE Open Journal of the Industrial Electronics Society","volume":"6 ","pages":"265-276"},"PeriodicalIF":5.2,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10849619","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143455223","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"2024 Index IEEE Open Journal of the Industrial Electronics Society Vol. 5","authors":"","doi":"10.1109/OJIES.2025.3531738","DOIUrl":"https://doi.org/10.1109/OJIES.2025.3531738","url":null,"abstract":"","PeriodicalId":52675,"journal":{"name":"IEEE Open Journal of the Industrial Electronics Society","volume":"5 ","pages":"1-23"},"PeriodicalIF":5.2,"publicationDate":"2025-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10847312","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142992884","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Reliable DC Shipboard Power Systems—Design, Assessment, and Improvement","authors":"Robin van der Sande;Aditya Shekhar;Pavol Bauer","doi":"10.1109/OJIES.2025.3532095","DOIUrl":"https://doi.org/10.1109/OJIES.2025.3532095","url":null,"abstract":"Targeting a climate-neutral maritime sector drives the adoption of the all-electric ship (AES). While AESs can utilize both ac and dc shipboard power systems (SPS), a dc system offers advantages in efficiency, power density, and source synchronization. However, the enhanced network complexity of dc grids combined with the high penetration of power electronic devices and harsh environmental conditions can compromise the system's reliability. Therefore, this article provides an overview of the reliability aspect of dc-SPSs, addressing the power system design, adequacy assessment, and reliability improvement. First, the performance tradeoffs associated with the SPS design are examined, revealing how changes in the power system topology and dc bus structure impact the vessel's reliability along with other performance parameters. Second, a hierarchical reliability model framework is proposed for the adequacy assessment of dc-SPSs, considering the reliability from the component level up to the system level. To determine the system-level reliability, multiple probabilistic methods, including simulation and analytical models, are compared using a propulsion subsystem example. Finally, an overview of the reliability improvement strategies is provided, addressing methods at the system, device, and component level. These three topics combined aim to provide guidance in the design of future reliable dc-SPSs.","PeriodicalId":52675,"journal":{"name":"IEEE Open Journal of the Industrial Electronics Society","volume":"6 ","pages":"235-264"},"PeriodicalIF":5.2,"publicationDate":"2025-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10848163","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143430505","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}