{"title":"An Overview of Inertia Emulation Strategies for DC Microgrids: Stability Analysis and AC Microgrid Analogies","authors":"Mahdis Haddadi;Saman A. Gorji;Samson S. Yu","doi":"10.1109/OJIES.2025.3550625","DOIUrl":"https://doi.org/10.1109/OJIES.2025.3550625","url":null,"abstract":"Inertia is a critical factor in maintaining the frequency stability of power systems. However, the growing integration of power electronics-based renewable energy sources (RESs) has significantly reduced system inertia. AC and dc microgrids have emerged as key solutions for integrating RESs. Unlike traditional synchronous generators, power electronic converters interfacing RESs lack inherent inertia and damping, posing challenges to the control and stability of these microgrids. To address these challenges, virtual inertia control strategies, which emulate the behavior of synchronous generators, have been widely adopted to enhance the stability of ac microgrids. Drawing on the analogies between ac and dc systems, similar virtual inertia concepts have been extended to dc microgrids, demonstrating their potential to improve system stability. This article provides a comprehensive review of inertia enhancement strategies for dc microgrids, examining their key features, benefits, and limitations. The analogy between synchronous generators/dc machines and energy storage systems is explored, with a particular focus on the implementation of virtual inertia and damping control in energy storage converters as a promising solution to mitigate power fluctuations. In addition, this article investigates the grid-forming and grid-following converter analogies in ac and dc microgrids. Various stability analysis methods applied to inertia enhancement strategies are also reviewed, offering readers a comprehensive understanding of the current state of research. By addressing the conceptual and technical analogies between ac and dc systems, this review aims to provide valuable insights for developing advanced control strategies for next-generation microgrids.","PeriodicalId":52675,"journal":{"name":"IEEE Open Journal of the Industrial Electronics Society","volume":"6 ","pages":"491-521"},"PeriodicalIF":5.2,"publicationDate":"2025-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10923700","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143808882","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Improved Direct Power Control of T-Type Rectifiers With Parameter Robustness Feedforward Compensation for DC-Bus Voltage Ripple Suppression Under Unbalanced Grid Conditions","authors":"Yi-Hung Liao;Jia-Sheng Liu;Pu-Yi Huang;Ping-Ju Chen","doi":"10.1109/OJIES.2025.3549475","DOIUrl":"https://doi.org/10.1109/OJIES.2025.3549475","url":null,"abstract":"In a three-phase three-level ac/dc converter, the T-type rectifier features high efficiency and lower power switch stress, and it allows the dc-side voltage to serve as two independent output voltage sources. In practical applications, the operation of the T-type rectifier under unbalanced three-phase grid conditions must be considered. This article establishes an improved direct power control structure based on extended power theory under unbalanced grid conditions to achieve distortion-free current for the T-type rectifier. Additionally, a feedforward virtual capacitor power compensation is created to eliminate the output voltage ripples caused by the ripple power of the rectifier inductance under the unbalanced three-phase grid. The controller design of the improved direct power control and the choice of the virtual capacitor are analyzed. Furthermore, the proposed method regulates the neutral point voltage of the T-type rectifier, eliminates neutral point current disturbances, and provides a stable and accurate dc output voltage, ensuring high quality power supply. The proposed strategy does not require a phase-locked loop or ac-side system parameters, resulting in excellent dynamic performance and robustness against parameter mismatches. Finally, the effectiveness and feasibility of the proposed control strategy are verified through simulation results and the implementation of a 2.4 kW three-phase T-type rectifier.","PeriodicalId":52675,"journal":{"name":"IEEE Open Journal of the Industrial Electronics Society","volume":"6 ","pages":"429-444"},"PeriodicalIF":5.2,"publicationDate":"2025-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10918756","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143698288","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"New Bidirectional Isolated Three-Phase DC–DC Converter With Parallel-to-Serial Configuration for Energy Applications","authors":"Jorge Jiménez-Giménez;Antonio Lázaro;Álvar Mayor;Jaime López-López;Andrés Barrado","doi":"10.1109/OJIES.2025.3548842","DOIUrl":"https://doi.org/10.1109/OJIES.2025.3548842","url":null,"abstract":"This article presents a set of bidirectional dc–dc power converter solutions for high-voltage, high-power applications using magnetic and semiconductor devices that need to handle a small fraction of the rated power and voltage. The elements are integrated in an interleaved operation, which results in the generation of a low rms and pseudosine phase current. All these features result in a topology with a high level of efficiency, maintaining soft-switching over the entire operating range. Steady-state equations and simulation results are presented and then experimentally validated with a 25 kW prototype converter. Finally, it is verified that the solution is suitable for the needs of the proposed dc-microgrid scenario, that includes hydrogen production and an EV-charger, using solar PV-panels and battery energy storage systems as energy sources.","PeriodicalId":52675,"journal":{"name":"IEEE Open Journal of the Industrial Electronics Society","volume":"6 ","pages":"459-477"},"PeriodicalIF":5.2,"publicationDate":"2025-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10916738","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143740351","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Roberto Martín López;Sergio de López Diz;Alessandro Faro;Emilio José Bueno Peña;Alessandro Lidozzi
{"title":"Grid-Forming Controller for Multi DC/AC Converter Topology Supplying 25 kVAC Single-Phase Railway Catenary From 3 kVDC","authors":"Roberto Martín López;Sergio de López Diz;Alessandro Faro;Emilio José Bueno Peña;Alessandro Lidozzi","doi":"10.1109/OJIES.2025.3548456","DOIUrl":"https://doi.org/10.1109/OJIES.2025.3548456","url":null,"abstract":"One of the primary challenges associated with single-phase AC railway electrification is the unbalance created within the three-phase supply grid. This problem does not arise in DC electrification systems. The aim of this article is to introduce a novel Grid-Forming control strategy, which applied to a power electronics based topology allows the generation of an AC catenary from the DC catenary. Focusing on the capabilities of the control algorithm, the system is presented as a fully scalable solution employing multiple grid-forming DC/AC converters. These converters use power control loops based on the Virtual Synchronous Machine concept, adapted to single-phase operation. A key advantage of this approach is that all converters within the system contribute to supporting both voltage and frequency stability. In addition, the implementation does not require a higher-level controller or communication system. Through an appropriate power control design, the power supplied by each converter, relative to the total load demand, can be determined.","PeriodicalId":52675,"journal":{"name":"IEEE Open Journal of the Industrial Electronics Society","volume":"6 ","pages":"445-458"},"PeriodicalIF":5.2,"publicationDate":"2025-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10914004","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143706582","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Improving Speed Regulation of a Permanent Magnet Synchronous Motor Using Modified Model Predictive Control With an Adaptive Second-Order Disturbance Observer","authors":"Ton Hoang Nguyen;Ty Trung Nguyen;Jae Wook Jeon","doi":"10.1109/OJIES.2025.3547767","DOIUrl":"https://doi.org/10.1109/OJIES.2025.3547767","url":null,"abstract":"In this study, we propose a modified model predictive control (MMPC) approach combined with an adaptive second-order disturbance observer (ASDO) for efficient speed control of permanent magnet synchronous motors in the presence of unknown disturbances, such as system parameter variations and external load torque. The MMPC incorporates feedforward reference compensation (FFRC) and a posterior constraint compensation (PCC) technique. When the motor operates on a nonconstant velocity profile, the FFRC technique reduces the tracking delay associated with conventional MPC methods. In addition, the PCC technique addresses control signal constraints under a step velocity profile without requiring the solution of complex optimization problems at each time step, thereby reducing the computational effort for the controller. Furthermore, the ASDO utilizes a second-order disturbance observer to enhance the robustness of the MMPC. An adaptive observer bandwidth algorithm is proposed to minimize random noise and current ripple. The performance of the proposed methods was evaluated by applying them to an industrial motor drive, confirming their validity and practicality in real-world operations.","PeriodicalId":52675,"journal":{"name":"IEEE Open Journal of the Industrial Electronics Society","volume":"6 ","pages":"415-428"},"PeriodicalIF":5.2,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10909597","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143667294","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Manuel Martínez-Gómez;Marcos E. Orchard;Serhiy Bozhko;Patrick Wheeler;Claudio Burgos-Mellado
{"title":"Distributed Control Scheme for the Coordination of Interlinking Converters in Islanded Hybrid AC/DC Multi-Microgrids","authors":"Manuel Martínez-Gómez;Marcos E. Orchard;Serhiy Bozhko;Patrick Wheeler;Claudio Burgos-Mellado","doi":"10.1109/OJIES.2025.3545632","DOIUrl":"https://doi.org/10.1109/OJIES.2025.3545632","url":null,"abstract":"Multiple interconnected ac and dc microgrids (MGs) are being studied by academia and industry because of their benefits despite their operational challenges. Coordinating distributed generators (DGs) is complex, so communication-based controllers are proliferating in the literature. Then, this work proposes a distributed control strategy for islanded ac/dc multi-MGs interconnected by interlinking converters (ILCs). The proposed scheme is implemented in the ILCs and consists of distributed controllers that equalize global generation costs, allowing secondary control in each MG. Control actions that safeguard the saturated operation of MGs and ILCs are included in the control designs. The simultaneous operation with multiple objectives is possible due to adjusting control parameters according to a prioritization criterion. Experiments are conducted through an extensive simulated environment. The results show the proposed multiobjective controllers could maintain global optimal costs during normal operation while not overloading DGs, ILCs, subgrids, and clusters of ILCs. Furthermore, the strategy may reduce operational costs in the long term by protecting the lifetime of critical MG components. Desynchronization of incremental costs is enforced at 15% at most under demanding conditions. Also, it is possible to operate against considerable (<inline-formula><tex-math>$>$</tex-math></inline-formula>250 [ms]) time delays in the tests.","PeriodicalId":52675,"journal":{"name":"IEEE Open Journal of the Industrial Electronics Society","volume":"6 ","pages":"358-379"},"PeriodicalIF":5.2,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10909984","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143621685","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Tomasz Święchowicz;Sebastian Styński;Krzysztof Kulikowski
{"title":"Reduced-Delay Sigma-Delta Filter for Accurate Current Measurement in PWM VSCs","authors":"Tomasz Święchowicz;Sebastian Styński;Krzysztof Kulikowski","doi":"10.1109/OJIES.2025.3546820","DOIUrl":"https://doi.org/10.1109/OJIES.2025.3546820","url":null,"abstract":"The popularity of sigma-delta measurement (SDM) in power electronics is increasing due to its high accuracy but is hampered by the significant measurement delay it introduces. This delay is further increased if the SDM's digital filter is designed to attenuate not only the quantization noise but also the pulsewidth modulation (PWM)-related harmonics. The main objective of this article is to improve the SDM methodology by adding and verifying a new digital filter, named the TSS filter, which reduces measurement delay while remaining robust against the presence of PWM ripple. Given the limited amount of published information on SDM accuracy in PWM voltage-source converters (VSCs), the secondary objective of this article is to experimentally compare it against regular sampled measurement (RSM) on a dedicated platform. To show that the resulting inaccuracies are inherent to RSM rather than stemming from poor converter design, an analysis of measurement error sources in PWM VSCs is conducted.","PeriodicalId":52675,"journal":{"name":"IEEE Open Journal of the Industrial Electronics Society","volume":"6 ","pages":"345-357"},"PeriodicalIF":5.2,"publicationDate":"2025-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10908654","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143621558","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Leveraging LLMs and Knowledge Graphs to Design Secure Automation Systems","authors":"Ali M. Hosseini;Wolfgang Kastner;Thilo Sauter","doi":"10.1109/OJIES.2025.3545811","DOIUrl":"https://doi.org/10.1109/OJIES.2025.3545811","url":null,"abstract":"The digital transformation of Industrial Control Systems (ICSs) within the Industry 4.0 paradigm is essential for industrial organizations to remain competitive, while cybersecurity is an enabler. However, security measures, often implemented late in the engineering process, lead to costly and complicated implementations. Thus, this article is concerned with the “security by design” principle in ICSs and facilitates compliance with ICS security standards, which can be legally mandated for some critical systems or adopted by asset owners to protect their assets. Current methods for compliance demand manual efforts from security experts, making the compliance process time-consuming and costly. To address this, we propose a framework for leveraging large language models (LLMs) combined with knowledge graphs to automate the interpretation of security requirements and system architecture as two main elements of the design phase. Our knowledge graph-augmented LLM framework converts system architectures into human natural language, enhancing the automation of various security analyses, especially those that need to handle textual requirements. The framework enables validating applicable security requirements provided by IEC 62443-3-3 (a widely-used ICS security standard) concerning system designs through a question-and-answer interface. To evaluate the framework, various questions with reference responses from human experts were prepared in the context of a use case, and the quality of the LLMs' responses was measured across various metrics. Moreover, we compared the framework with a baseline approach based on formal queries. The results show that the proposed framework effectively automates security tasks and offers a user-friendly interface accessible to nonexperts.","PeriodicalId":52675,"journal":{"name":"IEEE Open Journal of the Industrial Electronics Society","volume":"6 ","pages":"380-395"},"PeriodicalIF":5.2,"publicationDate":"2025-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10904297","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143637936","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Nonlinear Modeling and Identification of Doubly Fed Induction Machines Under Varying Grid Conditions","authors":"Andre Thommessen;Christoph M. Hackl","doi":"10.1109/OJIES.2025.3543683","DOIUrl":"https://doi.org/10.1109/OJIES.2025.3543683","url":null,"abstract":"Historically, grid-connected synchronous machines have formed the grid voltage and frequency. Today, the high penetration of inverter-based resources poses challenges to grid stability, as conventional grid-following control methods do not provide grid-forming capabilities. New grid-forming control methods need to stabilize the grid. Therefore, electromagnetic transient modeling is essential for control design and stability analysis in future power systems. This article proposes a novel reduced-order modeling and identification approach for doubly fed induction machines (DFIMs) with a grid-connected stator and inverter-connected rotor. The proposed generic modeling remains valid under varying grid or stator conditions. Consequently, the modeling approach is also applicable to induction machines with an inverter-connected stator. In this article, DFIM measurements identify a holistic current-to-flux mapping to model nonlinear magnetic saturation effects. A virtual current injection method is introduced to identify all differential inductances without additional measurements. Various simplified and holistic nonlinear modeling approaches are compared, and measurements validate the proposed holistic flux dynamics model under varying grid conditions.","PeriodicalId":52675,"journal":{"name":"IEEE Open Journal of the Industrial Electronics Society","volume":"6 ","pages":"535-547"},"PeriodicalIF":5.2,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10892244","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143817788","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Bilevel Optimization Framework for Multiregional Integrated Energy Systems Considering 6G Network Slicing and Battery Energy Storage Capacity Sharing","authors":"Kun Cui;Ming Chi;Yong Zhao;Zhi-Wei Liu","doi":"10.1109/OJIES.2025.3542262","DOIUrl":"https://doi.org/10.1109/OJIES.2025.3542262","url":null,"abstract":"Amidst the escalating challenges of global warming and energy crises, the rapid development of distributed renewable energy resources has emerged as a critical strategy. Regional integrated energy systems (RIESs) have garnered significant attention for their potential to integrate and optimize both distributed renewable energy resources and conventional energy facilities. This article presents a bilevel optimization framework for the electricity-storage coupling market in multi-RIES, considering the integration of 6G network slicing technology and battery energy storage (BES) capacity sharing. The upper-level model maximizes the profit of generation units by optimizing their bidding strategies, while the lower-level model aims to maximize social welfare through market clearing. The proposed line search-based global Levenberg–Marquardt algorithm addresses the limitations of existing algorithms with necessary and innovative improvements to tackle the challenge of global convergence in nonsmooth optimization problems. Numerical case studies validate the effectiveness of the proposed framework, demonstrating enhanced BES utilization, increased renewable energy generation, and improved social welfare. The results also highlight the sensitivity of social welfare to communication costs, underscoring the importance of careful cost calibration.","PeriodicalId":52675,"journal":{"name":"IEEE Open Journal of the Industrial Electronics Society","volume":"6 ","pages":"396-414"},"PeriodicalIF":5.2,"publicationDate":"2025-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10890923","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143667293","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}