Muhammad Mohsin Naveed;Mian Sajawal Shah;Niek Moonen;Mark Gerber;Thiago Batista Soeiro
{"title":"推进高频逆变器设计在更多的电动飞机:挑战和研究前景","authors":"Muhammad Mohsin Naveed;Mian Sajawal Shah;Niek Moonen;Mark Gerber;Thiago Batista Soeiro","doi":"10.1109/OJIES.2025.3597042","DOIUrl":null,"url":null,"abstract":"The transition toward aircraft electrification not only reduces the carbon footprint but also advances sustainable aviation, propelling the future of aviation with enhanced performance and system integration. In the realm of more electric aircraft (MEA), traditional hydraulic, pneumatic, and mechanical systems are being replaced by motor-driven electrical architectures. High-frequency inverters are essential for driving these motors at very high speeds (<inline-formula><tex-math>$>$</tex-math></inline-formula>100 kRPM). This article investigates the impact of the aviation environment on the design of high-frequency inverters, particularly considering the effects of low pressure, reduced air density, cosmic ray radiation, and a wide range of operating temperatures on semiconductor power devices and capacitive, resistive, and inductive components. The reduced air density at high altitudes makes cooling particularly challenging, highlighting the need for efficient thermal management systems. The study also explores electromagnetic interference, its generation and mitigation techniques while evaluating various pulsewidth modulation (PWM) technologies. Moreover, the article reviews the benefits and suitability of advanced multilevel inverter topologies for MEA applications. Finally, the article highlights the importance of innovative inverter topologies andPWM techniques that are better suited for MEA.","PeriodicalId":52675,"journal":{"name":"IEEE Open Journal of the Industrial Electronics Society","volume":"6 ","pages":"1423-1447"},"PeriodicalIF":4.3000,"publicationDate":"2025-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11119827","citationCount":"0","resultStr":"{\"title\":\"Advancing High-Frequency Inverter Design in More Electric Aircraft: Challenges and Research Perspectives\",\"authors\":\"Muhammad Mohsin Naveed;Mian Sajawal Shah;Niek Moonen;Mark Gerber;Thiago Batista Soeiro\",\"doi\":\"10.1109/OJIES.2025.3597042\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The transition toward aircraft electrification not only reduces the carbon footprint but also advances sustainable aviation, propelling the future of aviation with enhanced performance and system integration. In the realm of more electric aircraft (MEA), traditional hydraulic, pneumatic, and mechanical systems are being replaced by motor-driven electrical architectures. High-frequency inverters are essential for driving these motors at very high speeds (<inline-formula><tex-math>$>$</tex-math></inline-formula>100 kRPM). This article investigates the impact of the aviation environment on the design of high-frequency inverters, particularly considering the effects of low pressure, reduced air density, cosmic ray radiation, and a wide range of operating temperatures on semiconductor power devices and capacitive, resistive, and inductive components. The reduced air density at high altitudes makes cooling particularly challenging, highlighting the need for efficient thermal management systems. The study also explores electromagnetic interference, its generation and mitigation techniques while evaluating various pulsewidth modulation (PWM) technologies. Moreover, the article reviews the benefits and suitability of advanced multilevel inverter topologies for MEA applications. Finally, the article highlights the importance of innovative inverter topologies andPWM techniques that are better suited for MEA.\",\"PeriodicalId\":52675,\"journal\":{\"name\":\"IEEE Open Journal of the Industrial Electronics Society\",\"volume\":\"6 \",\"pages\":\"1423-1447\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2025-08-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11119827\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Open Journal of the Industrial Electronics Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/11119827/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Open Journal of the Industrial Electronics Society","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/11119827/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Advancing High-Frequency Inverter Design in More Electric Aircraft: Challenges and Research Perspectives
The transition toward aircraft electrification not only reduces the carbon footprint but also advances sustainable aviation, propelling the future of aviation with enhanced performance and system integration. In the realm of more electric aircraft (MEA), traditional hydraulic, pneumatic, and mechanical systems are being replaced by motor-driven electrical architectures. High-frequency inverters are essential for driving these motors at very high speeds ($>$100 kRPM). This article investigates the impact of the aviation environment on the design of high-frequency inverters, particularly considering the effects of low pressure, reduced air density, cosmic ray radiation, and a wide range of operating temperatures on semiconductor power devices and capacitive, resistive, and inductive components. The reduced air density at high altitudes makes cooling particularly challenging, highlighting the need for efficient thermal management systems. The study also explores electromagnetic interference, its generation and mitigation techniques while evaluating various pulsewidth modulation (PWM) technologies. Moreover, the article reviews the benefits and suitability of advanced multilevel inverter topologies for MEA applications. Finally, the article highlights the importance of innovative inverter topologies andPWM techniques that are better suited for MEA.
期刊介绍:
The IEEE Open Journal of the Industrial Electronics Society is dedicated to advancing information-intensive, knowledge-based automation, and digitalization, aiming to enhance various industrial and infrastructural ecosystems including energy, mobility, health, and home/building infrastructure. Encompassing a range of techniques leveraging data and information acquisition, analysis, manipulation, and distribution, the journal strives to achieve greater flexibility, efficiency, effectiveness, reliability, and security within digitalized and networked environments.
Our scope provides a platform for discourse and dissemination of the latest developments in numerous research and innovation areas. These include electrical components and systems, smart grids, industrial cyber-physical systems, motion control, robotics and mechatronics, sensors and actuators, factory and building communication and automation, industrial digitalization, flexible and reconfigurable manufacturing, assistant systems, industrial applications of artificial intelligence and data science, as well as the implementation of machine learning, artificial neural networks, and fuzzy logic. Additionally, we explore human factors in digitalized and networked ecosystems. Join us in exploring and shaping the future of industrial electronics and digitalization.