高度自动化逆向制造单元工业实施的功能和实用分类标准

IF 5.2 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Annagiulia Morachioli;Vladimir Sivtsov;Nicolas Rojas;Fabio Bonsignorio
{"title":"高度自动化逆向制造单元工业实施的功能和实用分类标准","authors":"Annagiulia Morachioli;Vladimir Sivtsov;Nicolas Rojas;Fabio Bonsignorio","doi":"10.1109/OJIES.2024.3453900","DOIUrl":null,"url":null,"abstract":"While it is a widespread understanding that the sustainability of the global economy requires a transition to a circular economy paradigm where a growing share of the raw materials resources used for the manufacturing of the products are recycled when products reach their end-of-life, still this much-needed transition faces organizational and technical challenges. The key technical and economic bottlenecks are in the automation of disassembly. In this article, we propose a viable functional framework for the systematic analysis, design, and implementation of disassembly cells. This framework consists of two main parts: a systematic categorization of disassembly tasks and a modular and flexible hardware (HW)/software (SW) architecture of a disassembly cell able to implement the disassembly tasks. We analyze and categorize human manipulation when disassembling a common object of daily working activities as a new companion concept to the more common concept of daily life activities. We tested and validated our methodology on the disassembly of a car suspension.","PeriodicalId":52675,"journal":{"name":"IEEE Open Journal of the Industrial Electronics Society","volume":"5 ","pages":"1115-1139"},"PeriodicalIF":5.2000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10666886","citationCount":"0","resultStr":"{\"title\":\"A Functional and Practical Taxonomy for the Industrial Implementation of Highly Automated Reverse Manufacturing Cells\",\"authors\":\"Annagiulia Morachioli;Vladimir Sivtsov;Nicolas Rojas;Fabio Bonsignorio\",\"doi\":\"10.1109/OJIES.2024.3453900\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"While it is a widespread understanding that the sustainability of the global economy requires a transition to a circular economy paradigm where a growing share of the raw materials resources used for the manufacturing of the products are recycled when products reach their end-of-life, still this much-needed transition faces organizational and technical challenges. The key technical and economic bottlenecks are in the automation of disassembly. In this article, we propose a viable functional framework for the systematic analysis, design, and implementation of disassembly cells. This framework consists of two main parts: a systematic categorization of disassembly tasks and a modular and flexible hardware (HW)/software (SW) architecture of a disassembly cell able to implement the disassembly tasks. We analyze and categorize human manipulation when disassembling a common object of daily working activities as a new companion concept to the more common concept of daily life activities. We tested and validated our methodology on the disassembly of a car suspension.\",\"PeriodicalId\":52675,\"journal\":{\"name\":\"IEEE Open Journal of the Industrial Electronics Society\",\"volume\":\"5 \",\"pages\":\"1115-1139\"},\"PeriodicalIF\":5.2000,\"publicationDate\":\"2024-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10666886\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Open Journal of the Industrial Electronics Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10666886/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Open Journal of the Industrial Electronics Society","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10666886/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

尽管人们普遍认识到,全球经济的可持续发展需要向循环经济范式过渡,即在产品达到报废年限时,用于制造产品的原材料资源有越来越大的份额被回收利用,但这一亟需的过渡仍然面临着组织和技术上的挑战。关键的技术和经济瓶颈在于拆卸自动化。在本文中,我们为拆卸单元的系统分析、设计和实施提出了一个可行的功能框架。该框架由两大部分组成:对拆卸任务的系统分类,以及能够执行拆卸任务的模块化、灵活的拆卸单元硬件(HW)/软件(SW)架构。我们对拆卸日常工作活动中常见物品时的人为操作进行了分析和分类,将其作为日常生活活动这一更常见概念的新辅助概念。我们在拆卸汽车悬架时测试并验证了我们的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Functional and Practical Taxonomy for the Industrial Implementation of Highly Automated Reverse Manufacturing Cells
While it is a widespread understanding that the sustainability of the global economy requires a transition to a circular economy paradigm where a growing share of the raw materials resources used for the manufacturing of the products are recycled when products reach their end-of-life, still this much-needed transition faces organizational and technical challenges. The key technical and economic bottlenecks are in the automation of disassembly. In this article, we propose a viable functional framework for the systematic analysis, design, and implementation of disassembly cells. This framework consists of two main parts: a systematic categorization of disassembly tasks and a modular and flexible hardware (HW)/software (SW) architecture of a disassembly cell able to implement the disassembly tasks. We analyze and categorize human manipulation when disassembling a common object of daily working activities as a new companion concept to the more common concept of daily life activities. We tested and validated our methodology on the disassembly of a car suspension.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Open Journal of the Industrial Electronics Society
IEEE Open Journal of the Industrial Electronics Society ENGINEERING, ELECTRICAL & ELECTRONIC-
CiteScore
10.80
自引率
2.40%
发文量
33
审稿时长
12 weeks
期刊介绍: The IEEE Open Journal of the Industrial Electronics Society is dedicated to advancing information-intensive, knowledge-based automation, and digitalization, aiming to enhance various industrial and infrastructural ecosystems including energy, mobility, health, and home/building infrastructure. Encompassing a range of techniques leveraging data and information acquisition, analysis, manipulation, and distribution, the journal strives to achieve greater flexibility, efficiency, effectiveness, reliability, and security within digitalized and networked environments. Our scope provides a platform for discourse and dissemination of the latest developments in numerous research and innovation areas. These include electrical components and systems, smart grids, industrial cyber-physical systems, motion control, robotics and mechatronics, sensors and actuators, factory and building communication and automation, industrial digitalization, flexible and reconfigurable manufacturing, assistant systems, industrial applications of artificial intelligence and data science, as well as the implementation of machine learning, artificial neural networks, and fuzzy logic. Additionally, we explore human factors in digitalized and networked ecosystems. Join us in exploring and shaping the future of industrial electronics and digitalization.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信