{"title":"高度自动化逆向制造单元工业实施的功能和实用分类标准","authors":"Annagiulia Morachioli;Vladimir Sivtsov;Nicolas Rojas;Fabio Bonsignorio","doi":"10.1109/OJIES.2024.3453900","DOIUrl":null,"url":null,"abstract":"While it is a widespread understanding that the sustainability of the global economy requires a transition to a circular economy paradigm where a growing share of the raw materials resources used for the manufacturing of the products are recycled when products reach their end-of-life, still this much-needed transition faces organizational and technical challenges. The key technical and economic bottlenecks are in the automation of disassembly. In this article, we propose a viable functional framework for the systematic analysis, design, and implementation of disassembly cells. This framework consists of two main parts: a systematic categorization of disassembly tasks and a modular and flexible hardware (HW)/software (SW) architecture of a disassembly cell able to implement the disassembly tasks. We analyze and categorize human manipulation when disassembling a common object of daily working activities as a new companion concept to the more common concept of daily life activities. We tested and validated our methodology on the disassembly of a car suspension.","PeriodicalId":52675,"journal":{"name":"IEEE Open Journal of the Industrial Electronics Society","volume":null,"pages":null},"PeriodicalIF":5.2000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10666886","citationCount":"0","resultStr":"{\"title\":\"A Functional and Practical Taxonomy for the Industrial Implementation of Highly Automated Reverse Manufacturing Cells\",\"authors\":\"Annagiulia Morachioli;Vladimir Sivtsov;Nicolas Rojas;Fabio Bonsignorio\",\"doi\":\"10.1109/OJIES.2024.3453900\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"While it is a widespread understanding that the sustainability of the global economy requires a transition to a circular economy paradigm where a growing share of the raw materials resources used for the manufacturing of the products are recycled when products reach their end-of-life, still this much-needed transition faces organizational and technical challenges. The key technical and economic bottlenecks are in the automation of disassembly. In this article, we propose a viable functional framework for the systematic analysis, design, and implementation of disassembly cells. This framework consists of two main parts: a systematic categorization of disassembly tasks and a modular and flexible hardware (HW)/software (SW) architecture of a disassembly cell able to implement the disassembly tasks. We analyze and categorize human manipulation when disassembling a common object of daily working activities as a new companion concept to the more common concept of daily life activities. We tested and validated our methodology on the disassembly of a car suspension.\",\"PeriodicalId\":52675,\"journal\":{\"name\":\"IEEE Open Journal of the Industrial Electronics Society\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.2000,\"publicationDate\":\"2024-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10666886\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Open Journal of the Industrial Electronics Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10666886/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Open Journal of the Industrial Electronics Society","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10666886/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
A Functional and Practical Taxonomy for the Industrial Implementation of Highly Automated Reverse Manufacturing Cells
While it is a widespread understanding that the sustainability of the global economy requires a transition to a circular economy paradigm where a growing share of the raw materials resources used for the manufacturing of the products are recycled when products reach their end-of-life, still this much-needed transition faces organizational and technical challenges. The key technical and economic bottlenecks are in the automation of disassembly. In this article, we propose a viable functional framework for the systematic analysis, design, and implementation of disassembly cells. This framework consists of two main parts: a systematic categorization of disassembly tasks and a modular and flexible hardware (HW)/software (SW) architecture of a disassembly cell able to implement the disassembly tasks. We analyze and categorize human manipulation when disassembling a common object of daily working activities as a new companion concept to the more common concept of daily life activities. We tested and validated our methodology on the disassembly of a car suspension.
期刊介绍:
The IEEE Open Journal of the Industrial Electronics Society is dedicated to advancing information-intensive, knowledge-based automation, and digitalization, aiming to enhance various industrial and infrastructural ecosystems including energy, mobility, health, and home/building infrastructure. Encompassing a range of techniques leveraging data and information acquisition, analysis, manipulation, and distribution, the journal strives to achieve greater flexibility, efficiency, effectiveness, reliability, and security within digitalized and networked environments.
Our scope provides a platform for discourse and dissemination of the latest developments in numerous research and innovation areas. These include electrical components and systems, smart grids, industrial cyber-physical systems, motion control, robotics and mechatronics, sensors and actuators, factory and building communication and automation, industrial digitalization, flexible and reconfigurable manufacturing, assistant systems, industrial applications of artificial intelligence and data science, as well as the implementation of machine learning, artificial neural networks, and fuzzy logic. Additionally, we explore human factors in digitalized and networked ecosystems. Join us in exploring and shaping the future of industrial electronics and digitalization.