IEEE Open Journal of the Industrial Electronics Society最新文献

筛选
英文 中文
Visualization Approach for RAMI 4.0 Value Chain Analysis RAMI 4.0价值链分析的可视化方法
IF 5.2
IEEE Open Journal of the Industrial Electronics Society Pub Date : 2024-12-19 DOI: 10.1109/OJIES.2024.3520410
Salman Javed;Jan van Deventer;Cristina Paniagua;Jerker Delsing
{"title":"Visualization Approach for RAMI 4.0 Value Chain Analysis","authors":"Salman Javed;Jan van Deventer;Cristina Paniagua;Jerker Delsing","doi":"10.1109/OJIES.2024.3520410","DOIUrl":"https://doi.org/10.1109/OJIES.2024.3520410","url":null,"abstract":"Industry 4.0 has revolutionized industrial automation, with models, such as Industry 4.0 Reference Architectural Model (RAMI 4.0), providing a structured framework for optimizing value chains and processes. However, the complexity and abstract nature of RAMI 4.0 have limited its practical application, especially due to the lack of clear visualization methods to understand industrial ecosystems. Effective visualization is essential to translate this framework into actionable insights, enabling stakeholders to grasp system interactions, dependencies, and value-creation processes. This article proposes a multidimensional visualization approach, illustrated through a smart heat pump example, to map information and operational technologies, their interactions, and value chains. Combining 3-D visualizations for integrated system overviews with 2-D visualizations for task-specific analysis, the approach provides a comprehensive understanding of RAMI 4.0 value chains, enabling stakeholders to address their analytical needs with clarity. It facilitates run-time value chain analysis, offering real-time insights for decision-making during operations. The approach maps industrial systems across RAMI 4.0 axes and aligns them with engineering processes and lifecycle phases, enabling the exploration of system interactions, dependencies, and stakeholder contributions. This supports the analysis of engineering and business processes, optimizes infrastructure, and facilitates smooth technological transitions. It enhances RAMI 4.0’s utility for real-time decision-making and operational efficiency, boosting competitiveness in industrial ecosystems.","PeriodicalId":52675,"journal":{"name":"IEEE Open Journal of the Industrial Electronics Society","volume":"6 ","pages":"1-24"},"PeriodicalIF":5.2,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10807841","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142938574","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Design and Performance Evaluation of Nonlinear Model-Predictive Control for 3-D Ground Target Tracking With Fixed-Wing UAVs 固定翼无人机三维地面目标跟踪非线性模型预测控制设计与性能评价
IF 5.2
IEEE Open Journal of the Industrial Electronics Society Pub Date : 2024-12-18 DOI: 10.1109/OJIES.2024.3519665
Ignacio J. Torres;Ricardo P. Aguilera;Quang P. Ha
{"title":"Design and Performance Evaluation of Nonlinear Model-Predictive Control for 3-D Ground Target Tracking With Fixed-Wing UAVs","authors":"Ignacio J. Torres;Ricardo P. Aguilera;Quang P. Ha","doi":"10.1109/OJIES.2024.3519665","DOIUrl":"https://doi.org/10.1109/OJIES.2024.3519665","url":null,"abstract":"This study presents the design of a nonlinear model-predictive controller (NMPC) for a fixed-wing uncrewed aerial vehicle (UAV) to circumnavigate a ground target. First, a nonlinear 3-D target tracking system model is presented. Subsequently, an NMPC is designed and formulated as a nonconvex optimal problem. To derive sufficient stability conditions for a nonlinear closed loop, a linear controller with bounded disturbance is analyzed in a specific terminal region. The controlled trajectory is attracted to the terminal region in the vicinity of the system reference, thereby enabling the use of convex model-predictive control tools for the proposed NMPC. Consequently, the NMPC closed-loop system is proven to reach the terminal region in a fixed prediction horizon, and consequently, the UAV can track the ground target. During the course, an initialization technique is used for optimization to prevent stability compromise by suboptimality. System stability is met for three different speed references with variations in the weighting factors. Extensive simulations are conducted to validate the proposed approach. Experimental results are included, providing insights into the field tests and verifying the control development. The results show that the UAV system is successfully steered to the target reference while effectively remaining within its confines.","PeriodicalId":52675,"journal":{"name":"IEEE Open Journal of the Industrial Electronics Society","volume":"6 ","pages":"76-94"},"PeriodicalIF":5.2,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10806664","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142938443","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Control of a Single-Phase Islanded Microgrid Based on Virtual Oscillator Control Enhanced With Power Limitation and Robust Distributed Secondary Control 基于功率限制增强虚拟振荡器和鲁棒分布式二次控制的单相孤岛微电网控制
IF 5.2
IEEE Open Journal of the Industrial Electronics Society Pub Date : 2024-12-18 DOI: 10.1109/OJIES.2024.3519809
Ronald Musona;Ioan Serban
{"title":"Control of a Single-Phase Islanded Microgrid Based on Virtual Oscillator Control Enhanced With Power Limitation and Robust Distributed Secondary Control","authors":"Ronald Musona;Ioan Serban","doi":"10.1109/OJIES.2024.3519809","DOIUrl":"https://doi.org/10.1109/OJIES.2024.3519809","url":null,"abstract":"Virtual oscillator control (VOC) has emerged as an alternative solution for controlling parallel connected inverters in microgrids (MGs) due to its self-synchronization and advanced control capabilities. To enhance the operations of VOC-based inverters, this article implements a power limitation controller that dispatches power according to the operating conditions and the primary source availability. Therefore, this mechanism allows the inverter to adapt to the intermittent nature of renewable energy sources and the operational constraints of batteries. The controller can limit both active and reactive power to specified setpoints. When an inverter reaches its power limit, the others that are not restricted by the power limitation take on the extra load. On top of VOC, a robust distributed secondary control was developed to restore the MG voltage and frequency. The controller uses the local frequency and voltage and the powers from the neighboring nodes obtained through a sparse communication network. Last, as part of a single-phase MG configuration, single-phase inverters generate a second-order current component in their dc-link that needs to be restricted from flowing to the dc source. To address this issue, this article implements a minimalist active power decoupling method adapted to the VOC inverter. Extensive simulations and experiments were conducted to validate the operation of the proposed system.","PeriodicalId":52675,"journal":{"name":"IEEE Open Journal of the Industrial Electronics Society","volume":"6 ","pages":"25-42"},"PeriodicalIF":5.2,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10806632","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142938576","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Numerical Recursive Aggregation of VSC-Based Systems Using Impedance Modeling for Stability Analysis 基于阻抗建模的vsc系统稳定性数值递归聚集分析
IF 5.2
IEEE Open Journal of the Industrial Electronics Society Pub Date : 2024-12-18 DOI: 10.1109/OJIES.2024.3519196
Taleb Vahabzadeh;Seyyedmilad Ebrahimi;Juri Jatskevich
{"title":"Numerical Recursive Aggregation of VSC-Based Systems Using Impedance Modeling for Stability Analysis","authors":"Taleb Vahabzadeh;Seyyedmilad Ebrahimi;Juri Jatskevich","doi":"10.1109/OJIES.2024.3519196","DOIUrl":"https://doi.org/10.1109/OJIES.2024.3519196","url":null,"abstract":"The high penetration of voltage-source converter (VSC) based resources poses stability challenges to modern power systems due to introducing new dynamics with broad time-scale and frequency-coupling. The so-called impedance-based modeling (IBM) is widely used for the dynamic characterization and stability analysis of grid-connected VSCs. In this article, it is first shown that using IBM, the analytical aggregation of interconnected VSC-based systems results in very high-order transfer matrices, which are not conducive to stability analysis. As an alternative, a numerical recursive aggregation technique is proposed for interconnected VSC-based power systems. Using the proposed method, the individual multi-input multi-output transfer matrices of the IBM of VSCs can be readily used for aggregation across a range of discrete frequencies. Moreover, an algorithm is proposed to automate the aggregation of multiconverter-based systems. The proposed technique is illustrated on a VSC-based power system with multiple converters considering the interconnecting line impedances. The time-domain simulations and frequency analysis verify the accuracy and effectiveness of the proposed method, demonstrating that it is over 990 times computationally more efficient than the small-signal injection method for calculating the aggregated load admittance while also offering almost 80 times higher frequency resolution.","PeriodicalId":52675,"journal":{"name":"IEEE Open Journal of the Industrial Electronics Society","volume":"6 ","pages":"62-75"},"PeriodicalIF":5.2,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10806748","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142938575","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Enhanced SVPWM Techniques for Six-Phase Inverters: Mitigation of Current Harmonics and Common Mode Voltage 用于六相逆变器的增强型 SVPWM 技术:降低电流谐波和共模电压
IF 5.2
IEEE Open Journal of the Industrial Electronics Society Pub Date : 2024-12-09 DOI: 10.1109/OJIES.2024.3512588
Kotb B. Tawfiq;Hatem Zeineldin;Ahmed Al-Durra;Ehab F. El-Saadany
{"title":"Enhanced SVPWM Techniques for Six-Phase Inverters: Mitigation of Current Harmonics and Common Mode Voltage","authors":"Kotb B. Tawfiq;Hatem Zeineldin;Ahmed Al-Durra;Ehab F. El-Saadany","doi":"10.1109/OJIES.2024.3512588","DOIUrl":"https://doi.org/10.1109/OJIES.2024.3512588","url":null,"abstract":"Reducing current harmonics and common mode voltage (CMV) holds highest importance for six-phase electric vehicles, as it not only prolongs the lifespan of crucial components but also significantly enhances overall vehicle performance, operational efficiency and improved thermal management. This article introduces an innovative switching sequence for space vector pulsewidth modulation (SVPWM) in six-phase inverters, aimed at significantly reducing CMV and total harmonic distortion (THD) of phase currents. The proposed method optimally selects switching states with minimal and/or zero CMV and ensures balanced distribution in the \u0000<inline-formula><tex-math>$x - y$</tex-math></inline-formula>\u0000 subspace, resulting in null \u0000<inline-formula><tex-math>$x - y$</tex-math></inline-formula>\u0000 voltage and current components. Comparative analysis was conducted against two existing SVPWM techniques: reference SVPWM sequence-1 (RSVM1), known for the lowest THD but highest CMV, and six-phase discontinuous CMV sequence-2-A2 (6Φ-DCMV2-A2), which has the lowest CMV but higher THD. Experimental setups and MATLAB simulations validated the findings. The proposed SVPWM demonstrates a CMV reduction of 23.86% and 89.42% compared to RSVM1 at modulation indices of 0.9 and 0.1, respectively. It also achieves the lowest THD, being 16.67% and 36.72% lower than 6Φ-DCMV2-A2 for asymmetrical six-phase induction motors and R-L load, respectively. Furthermore, the three SVPWM techniques showed comparable conduction, switching, and overall inverter losses.","PeriodicalId":52675,"journal":{"name":"IEEE Open Journal of the Industrial Electronics Society","volume":"5 ","pages":"1339-1352"},"PeriodicalIF":5.2,"publicationDate":"2024-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10783444","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142825940","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Fast MPPT Method Based on Improved Water Cycle Optimization Algorithm for Photovoltaic Systems Under Partial Shading Conditions and Load Variations 基于改进水循环优化算法的部分遮阳和负荷变化光伏系统快速MPPT方法
IF 5.2
IEEE Open Journal of the Industrial Electronics Society Pub Date : 2024-12-05 DOI: 10.1109/OJIES.2024.3510367
Rafah Ibraheem Jabbar;Saad Mekhilef;Marizan Mubin;Obaid Alshammari;Ahmed Kazaili
{"title":"A Fast MPPT Method Based on Improved Water Cycle Optimization Algorithm for Photovoltaic Systems Under Partial Shading Conditions and Load Variations","authors":"Rafah Ibraheem Jabbar;Saad Mekhilef;Marizan Mubin;Obaid Alshammari;Ahmed Kazaili","doi":"10.1109/OJIES.2024.3510367","DOIUrl":"https://doi.org/10.1109/OJIES.2024.3510367","url":null,"abstract":"Photovoltaic array characteristics with partial shading (PS) have multiple maximum power points (MPPs), and conventional algorithms have difficulties in tracking accurate global maximum power points (GMPPs). This study proposes a MPP tracking (MPPT) method based on improved water cycle optimization for fast-tracking the GMPP under PS conditions, along with a new strategy to enhance the convergence speed of the MPPT method during load variations. The experimental setup included a dc–dc single-ended primary inductance converter (SEPIC) and digital signal processing and control engineering (DSPACE) controller to assess the performance of the proposed method. The proposed method was also compared with the conventional water cycle optimization and six MPPT algorithms. The experimental results showed that the proposed method obtained an average tracking efficiency of 99.92% and a tracking time of 0.475 s for all PS tests. Moreover, it achieved a GMPP in a single perturbation step when the load change occurred, reducing the power loss in the photovoltaic (PV) system. The comparison showed that the proposed method performed better than the other MPPT methods in terms of tracking efficiency, convergence speed, and ease of implementation. This method could be utilized to implement developed PV systems with minimal losses.","PeriodicalId":52675,"journal":{"name":"IEEE Open Journal of the Industrial Electronics Society","volume":"5 ","pages":"1324-1338"},"PeriodicalIF":5.2,"publicationDate":"2024-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10779186","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142821177","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Review of Design Freedom Offered by Additive Manufacturing for Performance Enhancement of Electrical Machine 增材制造为提高电机性能提供的设计自由度综述
IF 5.2
IEEE Open Journal of the Industrial Electronics Society Pub Date : 2024-12-02 DOI: 10.1109/OJIES.2024.3509547
Zahoor Ahmad;Ants Kallaste;Toomas Vaimann;Muhammad Usman Naseer;Shahid Hussain;Anton Rassõlkin
{"title":"Review of Design Freedom Offered by Additive Manufacturing for Performance Enhancement of Electrical Machine","authors":"Zahoor Ahmad;Ants Kallaste;Toomas Vaimann;Muhammad Usman Naseer;Shahid Hussain;Anton Rassõlkin","doi":"10.1109/OJIES.2024.3509547","DOIUrl":"https://doi.org/10.1109/OJIES.2024.3509547","url":null,"abstract":"Additive manufacturing (AM) enables the creation of parts with exceptional geometric versatility, creating new possibilities for developing nonsymmetrical electrical machines (EM) with compact structures, reduced mass density, high torque, better power density, and minimal material waste during fabrication. This review highlights the current state of AM methods and their critical role in the production of EM. The impact of the additively built EM components concerning performance indices, including torque, power density, and efficiency, is highlighted. In addition, an overview of the constraints associated with the traditional production process of EM-specific components and the role of AM in addressing those limitations is emphasized. As per the current state of AM in the context of EM production, the nonconventional structures of the stator and rotor core of EMs are feasible to fabricate to accomplish improved utilization of magnetic flux. Moreover, AM enables the fabrication of windings/coils of any profiles with integrated functionality, including the design of thermal management mechanisms to enhance EM performance and achieve thermally controlled EM. However, the current state of AM technology is not very advanced and requires additional improvement, particularly in areas of EM production, which are minimizing eddy current losses, high-quality surface refinement, build volume restrictions, and simultaneous multimaterials processing.","PeriodicalId":52675,"journal":{"name":"IEEE Open Journal of the Industrial Electronics Society","volume":"5 ","pages":"1300-1323"},"PeriodicalIF":5.2,"publicationDate":"2024-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10772070","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142821259","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Graph-Attention Diffusion for Enhanced Multivariate Time-Series Anomaly Detection 增强多元时间序列异常检测的图注意扩散
IF 5.2
IEEE Open Journal of the Industrial Electronics Society Pub Date : 2024-11-18 DOI: 10.1109/OJIES.2024.3501014
Vadim Lanko;Ilya Makarov
{"title":"Graph-Attention Diffusion for Enhanced Multivariate Time-Series Anomaly Detection","authors":"Vadim Lanko;Ilya Makarov","doi":"10.1109/OJIES.2024.3501014","DOIUrl":"https://doi.org/10.1109/OJIES.2024.3501014","url":null,"abstract":"Multivariate time-series anomaly detection is a complex task that requires capturing temporal and spatial correlations. Recently, among the unsupervised methods, diffusion models have attracted increased attention among researchers for addressing this particular task. However, spatial information often remains underutilized or overlooked in existing models. In this article, we propose a novel reconstruction-based approach that enhances normal pattern learning through data masking and leverages diffusion models to capture both temporal and spatial interrelations via graph-attention layers. To address the problem of overgeneralization, where anomalous points are reconstructed too well, potentially abnormal points are initially masked based on the reconstruction error produced by the autoencoder. The masked time-series data is then corrupted by noise and reconstructed back by the diffusion model that removes noise in a step-by-step manner. Evaluation on four datasets from various sources demonstrates the effectiveness of our approach, achieving an average \u0000<inline-formula><tex-math>$F1$</tex-math></inline-formula>\u0000-score of 96.51%, outperforming many existing baselines. The ablation study estimates the contribution of each of the key components of the model to the score.","PeriodicalId":52675,"journal":{"name":"IEEE Open Journal of the Industrial Electronics Society","volume":"5 ","pages":"1353-1364"},"PeriodicalIF":5.2,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10755103","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142880453","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Resilient Operation of Grid-Forming Inverters Under Large-Scale Disturbances in Low Inertia Power System 低惯量电力系统大扰动下并网逆变器的弹性运行
IF 5.2
IEEE Open Journal of the Industrial Electronics Society Pub Date : 2024-11-18 DOI: 10.1109/OJIES.2024.3501078
Muhammad F. Umar;Amirhosein Gohari Nazari;Mohammad B. Shadmand;Haitham Abu-Rub
{"title":"Resilient Operation of Grid-Forming Inverters Under Large-Scale Disturbances in Low Inertia Power System","authors":"Muhammad F. Umar;Amirhosein Gohari Nazari;Mohammad B. Shadmand;Haitham Abu-Rub","doi":"10.1109/OJIES.2024.3501078","DOIUrl":"https://doi.org/10.1109/OJIES.2024.3501078","url":null,"abstract":"The future power grid is transitioning toward a low inertia power system due to the displacement of synchronous generators (SG)-based generation sources and incorporating inverters-based renewable energy resources. Heterogeneous grid-forming inverters (GFMIs) are expected to be dominant sources in the power generation mix due to several benefits that are inherited in this inverter control. However, these GFMIs impose different transients on the power grid that did not exist in the conventional power grid. The effect of this heterogeneity on the dynamic behavior of such power grid with a fleet of GFMIs becomes more significant under large-scale disturbances such as short circuit faults. Particularly, because of the noncoherent and heterogeneous dynamic behavior of GFMIs in the presence of the conventional overcurrent protection schemes posing several challenges to the resiliency of a power grid during a fault and in a postfault state. To improve the resiliency of the power grid with heterogeneous GFMIs during these conditions, a coherency enforcement scheme among heterogeneous GFMI is proposed. This ensures a coherent transition of GFMIs from the normal to fault-ride-through mode and from the fault-ride-through mode to normal condition when the fault is cleared. Moreover, the proposed improvements in GFMI control prevent the excessive change/acceleration in the voltage angle of GFMIs that prevents the loss of synchronism, improves the dynamic behavior of GFMIs, and ensure seamless operation under large-scale disturbances, resulting in enhancing resiliency of power grid. These claims in the resiliency enhancements for a power grid dominated with heterogeneous GFMIs under large-scale disturbances are validated via hardware-in-the-loop experimental case studies.","PeriodicalId":52675,"journal":{"name":"IEEE Open Journal of the Industrial Electronics Society","volume":"5 ","pages":"1286-1299"},"PeriodicalIF":5.2,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10755083","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142777751","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Skewing Technology for Permanent Magnet Synchronous Motors: A Comprehensive Review and Recent Trends 永磁同步电机的偏转技术:综述及最新趋势
IF 5.2
IEEE Open Journal of the Industrial Electronics Society Pub Date : 2024-11-04 DOI: 10.1109/OJIES.2024.3491295
Ren Tsunata;Masatsugu Takemoto
{"title":"Skewing Technology for Permanent Magnet Synchronous Motors: A Comprehensive Review and Recent Trends","authors":"Ren Tsunata;Masatsugu Takemoto","doi":"10.1109/OJIES.2024.3491295","DOIUrl":"https://doi.org/10.1109/OJIES.2024.3491295","url":null,"abstract":"This article gives a comprehensive overview of the current research trends in the skewing technique for permanent magnet synchronous motors (PMSMs). The skewing technique has been widely used in many applications to reduce the cogging torque and torque ripple in PMSMs. There are many ways to implement the skew, and new techniques are continually being developed. First, this article summarizes the types of skew structures and presents a survey of existing techniques. Specific emphasis is placed on what kind of skew structure is selected depending on the PMSM configuration. Second, the optimal value of the skew angle for each structure is comprehensively explained, and the discrepancy between theory and finite element analysis is discussed. The definition of skew angle varies across the literature, and one of the purposes of this article is to organize the definition in an easy-to-understand manner. In addition, this article offers three-dimensional finite element analysis (3D-FEA) results of various PMSMs employing the skew for quantitative comparison. Then, this article discusses the properties of PMSMs using the skew by structure and the latest trends, and finally describes future prospects.","PeriodicalId":52675,"journal":{"name":"IEEE Open Journal of the Industrial Electronics Society","volume":"5 ","pages":"1251-1273"},"PeriodicalIF":5.2,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10742395","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142777522","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信