{"title":"Cluster-Fault Control Strategies for Modular Multilevel Converters","authors":"Oliver Kalmbach;Christoph M. Hackl","doi":"10.1109/OJIES.2025.3560741","DOIUrl":"https://doi.org/10.1109/OJIES.2025.3560741","url":null,"abstract":"Modular multilevel converters (MMCs) are widely used for high-voltage and high-power applications. They are highly scalable, modular, and flexible in operation. However, this comes with the price of a large number of components, such as semiconductors and capacitors. Each of those components is prone to failure. This article presents four fault-tolerant control strategies for MMCs under severe failures: cluster faults that have been rarely discussed in literature for MMCs. Three fault modes are discussed and four cluster-fault control strategies are proposed. All approaches are derived in detail and validated by simulation and measurement results, including transitions from healthy to faulty operation for different power factors and power steps. The results show that proper functionality of the MMC by the proposed cluster-fault control strategies is still achievable even under the resulting voltage constraints. The proposed cluster-fault control strategies are simple to implement and allow for 1) an easy integration into (existing) systems and 2) an improved fault tolerance of MMCs.","PeriodicalId":52675,"journal":{"name":"IEEE Open Journal of the Industrial Electronics Society","volume":"6 ","pages":"685-707"},"PeriodicalIF":5.2,"publicationDate":"2025-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10964518","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143943885","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Lucas Jonys Ribeiro Silva;Márcio Von Rondow Campos;Thales Augusto Fagundes;Bruno Meneghel Zilli;Rodolpho Vilela Alves Neves;Ricardo Quadros Machado;Vilma Alves de Oliveira
{"title":"Optimized Sigmoid-Based Complete Ensemble Empirical Mode Decomposition for Energy Management in Hybrid Electric Vehicles","authors":"Lucas Jonys Ribeiro Silva;Márcio Von Rondow Campos;Thales Augusto Fagundes;Bruno Meneghel Zilli;Rodolpho Vilela Alves Neves;Ricardo Quadros Machado;Vilma Alves de Oliveira","doi":"10.1109/OJIES.2025.3559447","DOIUrl":"https://doi.org/10.1109/OJIES.2025.3559447","url":null,"abstract":"This article proposes a sigmoid-based particle swarm optimization (PSO) for a complete ensemble empirical mode decomposition (SPSO-CEEMD) applied to the energy management system of a hybrid electric vehicle. The low-frequency power demand, to be supplied by the lithium-ion battery (LIB) and internal combustion engine (ICE), is calculated by the CEEMD, while sigmoid functions define the ICE reference, avoiding discontinuities in the control strategy and limiting the response frequency in the implementation of power, velocity and angle control loops for the ICE butterfly valve actuator. High-frequency demand is handled by the ultracapacitor (UC), which controls the dc-link voltage. The sigmoid functions are optimized to reduce the ICE fuel consumption and the LIB aging, considering ICE emissions as constraints in the PSO. To make the UC available in next peak demands, its terminal voltage restoration is relaxed by a phase-lag compensator (PLC) tuned to actuate only after power delivers, which reduces the influence in the LIB dynamic. Experimental and numerical results under the HWYCOL, SC03, and a Brazilian real-world drive cycles show that SPSO-CEEMD reduces the total operational cost, LIB stress and aging compared to state-of-the-art strategies. Despite larger UC voltage restoration error with the PLC, LIB power dynamic is not significantly affected, increasing its lifetime by 2.74% and 10.96% compared to traditional PI and low-pass filter strategies, respectively. Moreover, the total operational cost is reduced by 18.28% and 47.54% in relation to the exclusive operation strategy and interval type-2 fuzzy logic control adapted from the literature.","PeriodicalId":52675,"journal":{"name":"IEEE Open Journal of the Industrial Electronics Society","volume":"6 ","pages":"651-668"},"PeriodicalIF":5.2,"publicationDate":"2025-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10960315","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143900514","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Identification and Evaluation of Pitfalls in the Migration From IEC 61131-3 to IEC 61499: A Review","authors":"Virendra Ashiwal;Oscar Miguel-Escrig;Bianca Wiesmayr;Alois Zoitl;Julio-Ariel Romero-Pérez","doi":"10.1109/OJIES.2025.3558685","DOIUrl":"https://doi.org/10.1109/OJIES.2025.3558685","url":null,"abstract":"The IEC 61131-3 standard was initially established to define a common software architecture and programming languages for programmable logic controllers (PLCs) produced by various manufacturers, leading to its widespread adoption since 1993. Since then, it has been a cornerstone in the industrial automation domain. Building upon this foundation, the IEC 61499 standard was developed to enhance the design and implementation of distributed control systems by incorporating advanced concepts from distributed systems and software engineering such as encapsulation, separation of control logic from communication infrastructure, and independent development of software components from their hardware deployment. While IEC 61499 introduces novel approaches, it also incorporates and extends key elements from IEC 61131-3, including function blocks, programming languages, and basic data types. Despite the advantages offered by the IEC 61499 standard, its adoption is still limited largely due to historical precedence, industry familiarity, better tool and vendor support, and the risk-averse nature of the industrial automation market. The migration or re-engineering effort from an existing IEC 61131-based automation system to IEC 61499 also faces challenges because it typically retains the underlying programming paradigms of IEC 61131-3. The contribution of this article is to identify the pitfalls associated with migrating PLC control code from IEC 61131-3-based automation systems to IEC 61499. For this purpose, we conducted a systematic literature review that address these identified migration pitfalls. We then synthesized the findings from the literature and provided a summary and research directions for addressing these pitfalls.","PeriodicalId":52675,"journal":{"name":"IEEE Open Journal of the Industrial Electronics Society","volume":"6 ","pages":"575-590"},"PeriodicalIF":5.2,"publicationDate":"2025-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10955217","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143879500","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Energy Efficiency Optimization Design for Cycle Position Servo PMSM Based on Operating Energy Consumption Model","authors":"Bin Yuan;Hui Li;Xuewei Xiang;Hao Zhou","doi":"10.1109/OJIES.2025.3555606","DOIUrl":"https://doi.org/10.1109/OJIES.2025.3555606","url":null,"abstract":"Motor efficient design is an important measure to reduce the energy consumption of servo motor system. Existing methods typically focus on optimizing the efficiency at specific operating points or the proportion of the high-efficiency region, making it difficult to quantify the matching of the position servo motor's periodic wide-domain operating conditions under trajectory planning. In this article, an energy efficiency optimization design method for position servo permanent magnet synchronous motor (PMSM) based on a cycle operating energy consumption model is proposed. First, the periodic operating states of PMSM under position trajectory planning are characterized by the speed-torque operating curve. A neural network mapping between PMSM full-domain dynamic losses and speed-torque-temperature is constructed based on finite element data. Combined with the physical analytical model of mechanical power and friction, a data-model driven precise model is established, enabling quantitative evaluation of the cycle energy consumption with different PMSM design schemes; then, taking cycle operating energy consumption and peak torque as optimization objectives, the optimal Latin hypercube sampling method is employed to generate finite element optimization data samples. Dimension reduction of design variables is performed through correlation analysis, followed by the establishment of a precise response surface model for optimization objectives and significant variables. The optimal design scheme after global optimization is quickly solved by the evolutionary algorithm. Finally, the effectiveness of the proposed method is verified through simulation and prototype experiments.","PeriodicalId":52675,"journal":{"name":"IEEE Open Journal of the Industrial Electronics Society","volume":"6 ","pages":"591-602"},"PeriodicalIF":5.2,"publicationDate":"2025-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10949210","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143883329","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Modeling and Proportional-Integral State Feedback Control of Fully Parallel Grid-Connected Inverters","authors":"Zhao Song;Simon Krüner;Christoph M. Hackl","doi":"10.1109/OJIES.2025.3557702","DOIUrl":"https://doi.org/10.1109/OJIES.2025.3557702","url":null,"abstract":"A novel three-phase grid-connected inverter topology with a split dc link and <italic>LC</i> filter is proposed. It allows for a full parallel connection of multiple inverters simultaneously on both the ac and dc sides, offering high modularity, redundancy, expandability, and overall system reliability. A generic dynamical system model is derived, considering the coupling effects between parallelized inverters, physical constraints, and varying grid impedance. A decentralized proportional-integral state feedback control (PI-SFC) with an extended Luenberger state observer is developed and compared with a conventional PI controller regulating inverter-side currents. A stability analysis shows that both closed-loop control systems remain stable even if an arbitrarily large number of inverters are connected in parallel. Simulations and experiments confirm the functionality and robustness of the closed-loop system under varying grid impedances and during grid faults. For the experimental results, the controllers were implemented on commercially available hardware of the proposed topology. In particular, the PI-SFC allows for better exploitation of the full power of the inverters due to its enhanced controller performance and damping ability. Besides, the exceptional match between simulation and experimental results proves the accuracy of the proposed system model as well.","PeriodicalId":52675,"journal":{"name":"IEEE Open Journal of the Industrial Electronics Society","volume":"6 ","pages":"618-636"},"PeriodicalIF":5.2,"publicationDate":"2025-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10948310","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143896499","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Reinforcement Learning Generalization for Quadrotor With Slung Load Systems Through Homogeneity Transformations","authors":"Abdel Gafoor Haddad;Igor Boiko;Yahya Zweiri","doi":"10.1109/OJIES.2025.3557206","DOIUrl":"https://doi.org/10.1109/OJIES.2025.3557206","url":null,"abstract":"Load transportation through unmanned aerial vehicles (UAVs), such as quadrotors, has a high potential for quick deliveries to locations that are out of the reach of ground vehicles. The complexity of the pick-and-place procedure in such tasks increases if the target location does not have a clearance at the top, necessitating the use of recent learning-based controllers such as reinforcement learning (RL). This article presents a new concept of dual-scale homogeneity, a property defined by scaled magnitudes and time in transformed coordinates that remain independent of system parameters. It demonstrates that applying transformations to achieve this property ensures consistent performance of a quadrotor with a slung load system (QSLS) despite variations in its parameters. Furthermore, it also presents an effective approach to design a parameter-dependent RL policy that homogenizes the QSLS. Unlike plain RL or gain-scheduled proportional-integral-derivative controllers, which confine parameter variations within a predefined range encountered during training or tuning, the developed approach works under large parameter variations, significantly surpassing the performance of traditional controllers. The conducted experiments on load placement in a confined space, utilizing a quadrotor to manage load swing, proved the proposed synergy between the homogeneity transformations and RL, yielding a success rate of 96% in bringing the load to its designated target with a 3-D RMSE of 0.0253 m.","PeriodicalId":52675,"journal":{"name":"IEEE Open Journal of the Industrial Electronics Society","volume":"6 ","pages":"560-574"},"PeriodicalIF":5.2,"publicationDate":"2025-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10947528","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143860786","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Claudio Nevoloso;Salvatore Foti;Gioacchino Scaglione;Antonino Oscar Di Tommaso;Salvatore De Caro;Antonio Testa;Rosario Miceli
{"title":"On the Inadequacy of IEC 60034-2-3 and IEC 60034-30-2 Standards for Power Losses, Efficiency and Energy Class Evaluation in PWM Multilevel Inverter-Driven PMSM","authors":"Claudio Nevoloso;Salvatore Foti;Gioacchino Scaglione;Antonino Oscar Di Tommaso;Salvatore De Caro;Antonio Testa;Rosario Miceli","doi":"10.1109/OJIES.2025.3574857","DOIUrl":"https://doi.org/10.1109/OJIES.2025.3574857","url":null,"abstract":"This work aims to highlight the inadequacy of international standards IEC 60034-2-3 and IEC 60034-30-2 for accurate efficiency, power losses, and efficiency class determination of ac motors fed by multilevel inverters driven with multicarrier pulsewidth modulation (PWM) strategies. The main motivation of this work stems from the fact that international standards IEC 60034-2-3 and IEC 60034-30-2 prescribe the use of the two-level voltage source inverter for ac motor losses, efficiency, and efficiency class determination, even for multilevel-inverter-fed ac motor. Therefore, this analysis aims to experimentally demonstrate IEC standards inadequacy, emphasizing the need to update them and provide a comprehensive framework for developing a power measurement procedure, specifically tailored to multilevel inverter-fed ac drives. More specifically, the goal is to support standardization bodies by simplifying their task and enabling IEC standards generalization to almost every multicarrier PWM-controlled multilevel inverter-fed ac drive. To this end, an accurate power loss analysis of an interior permanent magnet synchronous motor fed by a five-level cascaded H-bridge inverter, controlled with several multicarrier PWMs, is carried out. In detail, a precise power analysis in the frequency domain is performed to evaluate the impact of modulation strategies on motor power losses at different operating points in the speed–torque plane in terms of power losses, fundamental, and harmonic power losses. The motor power losses obtained with a five-level cascaded H-bridge multilevel inverter are compared to those obtained with a conventional two-level voltage source inverter, demonstrating that the application of IEC 60034-2-3 and IEC 60034-30-2 provides an underestimated motor energy efficiency class (IE-code).","PeriodicalId":52675,"journal":{"name":"IEEE Open Journal of the Industrial Electronics Society","volume":"6 ","pages":"962-981"},"PeriodicalIF":5.2,"publicationDate":"2025-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11017640","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144308461","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
João Marcus S. Callegari;Lucas S. Araujo;Danilo I. Brandao
{"title":"Selective Power Control in Grid-Connected AC Microgrids","authors":"João Marcus S. Callegari;Lucas S. Araujo;Danilo I. Brandao","doi":"10.1109/OJIES.2025.3575020","DOIUrl":"https://doi.org/10.1109/OJIES.2025.3575020","url":null,"abstract":"The increasing penetration of nonlinear loads (NLLs) and distributed energy resources (DERs) in low-voltage grids poses challenges to power quality and grid hosting capacity (GHC). This article proposes a centralized multimode selective power control strategy for grid-connected ac microgrids (MGs) that does not require prior knowledge of MG parameters. The strategy enhances GHC and power quality across multiple MG nodes through coordinated control in two nonsimultaneous modes. In the centralized mode, a generalized power-based control algorithm enables selective harmonic/distortion power dispatch. This formulation improves disturbance rejection and accuracy in point of common coupling (PCC) power tracking. For the first time, feedback, feedforward, and disturbance decoupling actions are applied to distortion/harmonic power in MGs. In the decentralized mode, harmonic current compensation (HCC) is achieved without communication links, reducing data traffic via a selective voltage-detection-based approach. The proposed strategy enables (i) resistive load synthesis at the PCC to damp upstream grid resonances, (ii) sinusoidal current synthesis (SCS) for current quality enhancement and compliance with standards, and (iii) HCC based on voltage measurements to improve voltage quality at internal nodes. Comprehensive simulations evaluate reference tracking, disturbance rejection, grid short-circuit level effects, and mode transitions. Results show that in decentralized mode, PCC voltage THD improved from 10.65% to 1.09% under weak grids. In centralized mode, with SCS up to the 11th harmonic, PCC current THD was reduced from 61.18% to 3.42% under stiff grids. Experimental results confirm the feasibility of implementation in real MGs.","PeriodicalId":52675,"journal":{"name":"IEEE Open Journal of the Industrial Electronics Society","volume":"6 ","pages":"938-961"},"PeriodicalIF":5.2,"publicationDate":"2025-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11017508","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144272707","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A Misalignment-Tolerant AUV-Capable Magnetic Coupler for Underwater Wireless Charging Systems","authors":"Chi-Fong Ieong;Hou-Wa Wong;Io-Wa Iam;Chi-Seng Lam","doi":"10.1109/OJIES.2025.3556244","DOIUrl":"https://doi.org/10.1109/OJIES.2025.3556244","url":null,"abstract":"In the underwater environment, autonomous underwater vehicles (AUVs) have seen substantial use in the submarine environment. To avoid surfacing the AUV for recharging, magnetic coupler (MC)-embedded docking stations and AUVs for underwater wireless charging have attracted much attention in recent years. In this article, we propose a misalignment-tolerant, light-weighted, AUV-capable MC structure for underwater wireless charging applications. With the proposed design, the MC can provide a relatively stable coupling even under various types of coil misalignment. We also provide an analytical method to estimate the mutual inductance of the proposed MC under different positions. Simulations on the MC design are performed by using ANSYS Maxwell to evaluate its performance under different misalignment scenarios. To verify the viability of the proposed MC in an inductive power transfer system, a 750-W wireless charging experimental prototype was built in the laboratory with the proposed MC design. With a light-weighted and compact receiver of 320 g and 110 cm<sup>3</sup>, the system can achieve a maximum efficiency of 93.1%. Even under different coils’ axial, rotational, and off-center misalignment scenarios, the measured system efficiency is over 92%.","PeriodicalId":52675,"journal":{"name":"IEEE Open Journal of the Industrial Electronics Society","volume":"6 ","pages":"548-559"},"PeriodicalIF":5.2,"publicationDate":"2025-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10945652","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143856376","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A-Source-Based Half-Bridge Inverter: Analysis, Design, and Implementation","authors":"Mohammadamin Aalami;Ebrahim Babaei;Saeid Ghassem Zadeh","doi":"10.1109/OJIES.2025.3574190","DOIUrl":"https://doi.org/10.1109/OJIES.2025.3574190","url":null,"abstract":"This article introduces a new half-bridge inverter that employs Z-source technology to achieve a high boost factor without blocking high voltage on passive or active devices. This configuration includes the coupled inductors shaped in the A-source form, which is why the proposed topology is referred to as an A-source-based half-bridge inverter. The operation modes of the proposed topology are analyzed based on the states of diodes and switches in each state. The boost factor, average currents, and voltages related to the passive components are calculated, and equations are derived to estimate the size of required inductors and capacitors and the ratings of the switches and diodes. Furthermore, the topology’s efficiency is analyzed through power loss studies. A comparison of the proposed topology with past configurations reveals its advantages and disadvantages, demonstrating its capacity to provide a high boost factor while having superior specifications than some of them. Finally, an experimental sample of the proposed topology is tested in the laboratory to ensure proper operation and to compare its power losses and efficiency with other past works.","PeriodicalId":52675,"journal":{"name":"IEEE Open Journal of the Industrial Electronics Society","volume":"6 ","pages":"1014-1026"},"PeriodicalIF":5.2,"publicationDate":"2025-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11016201","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144524372","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}