A-Source-Based Half-Bridge Inverter: Analysis, Design, and Implementation

IF 4.3 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Mohammadamin Aalami;Ebrahim Babaei;Saeid Ghassem Zadeh
{"title":"A-Source-Based Half-Bridge Inverter: Analysis, Design, and Implementation","authors":"Mohammadamin Aalami;Ebrahim Babaei;Saeid Ghassem Zadeh","doi":"10.1109/OJIES.2025.3574190","DOIUrl":null,"url":null,"abstract":"This article introduces a new half-bridge inverter that employs Z-source technology to achieve a high boost factor without blocking high voltage on passive or active devices. This configuration includes the coupled inductors shaped in the A-source form, which is why the proposed topology is referred to as an A-source-based half-bridge inverter. The operation modes of the proposed topology are analyzed based on the states of diodes and switches in each state. The boost factor, average currents, and voltages related to the passive components are calculated, and equations are derived to estimate the size of required inductors and capacitors and the ratings of the switches and diodes. Furthermore, the topology’s efficiency is analyzed through power loss studies. A comparison of the proposed topology with past configurations reveals its advantages and disadvantages, demonstrating its capacity to provide a high boost factor while having superior specifications than some of them. Finally, an experimental sample of the proposed topology is tested in the laboratory to ensure proper operation and to compare its power losses and efficiency with other past works.","PeriodicalId":52675,"journal":{"name":"IEEE Open Journal of the Industrial Electronics Society","volume":"6 ","pages":"1014-1026"},"PeriodicalIF":4.3000,"publicationDate":"2025-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11016201","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Open Journal of the Industrial Electronics Society","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/11016201/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

This article introduces a new half-bridge inverter that employs Z-source technology to achieve a high boost factor without blocking high voltage on passive or active devices. This configuration includes the coupled inductors shaped in the A-source form, which is why the proposed topology is referred to as an A-source-based half-bridge inverter. The operation modes of the proposed topology are analyzed based on the states of diodes and switches in each state. The boost factor, average currents, and voltages related to the passive components are calculated, and equations are derived to estimate the size of required inductors and capacitors and the ratings of the switches and diodes. Furthermore, the topology’s efficiency is analyzed through power loss studies. A comparison of the proposed topology with past configurations reveals its advantages and disadvantages, demonstrating its capacity to provide a high boost factor while having superior specifications than some of them. Finally, an experimental sample of the proposed topology is tested in the laboratory to ensure proper operation and to compare its power losses and efficiency with other past works.
基于a源的半桥逆变器:分析、设计与实现
本文介绍了一种新的半桥逆变器,它采用z源技术来实现高升压因数,而不会阻塞无源或有源器件上的高压。这种配置包括以a源形式形成的耦合电感,这就是为什么所提出的拓扑结构被称为基于a源的半桥逆变器。基于二极管和开关在每种状态下的状态,分析了所提出拓扑的工作模式。计算了与无源元件相关的升压因数、平均电流和电压,并推导了公式,以估计所需电感和电容器的尺寸以及开关和二极管的额定值。此外,通过功耗研究分析了该拓扑的效率。将所提出的拓扑结构与过去的配置进行比较,揭示其优点和缺点,证明其能够提供高升压因数,同时具有比其中一些更高的规格。最后,在实验室中测试了所提出的拓扑结构的实验样本,以确保其正常运行,并将其功率损耗和效率与其他过去的工作进行比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Open Journal of the Industrial Electronics Society
IEEE Open Journal of the Industrial Electronics Society ENGINEERING, ELECTRICAL & ELECTRONIC-
CiteScore
10.80
自引率
2.40%
发文量
33
审稿时长
12 weeks
期刊介绍: The IEEE Open Journal of the Industrial Electronics Society is dedicated to advancing information-intensive, knowledge-based automation, and digitalization, aiming to enhance various industrial and infrastructural ecosystems including energy, mobility, health, and home/building infrastructure. Encompassing a range of techniques leveraging data and information acquisition, analysis, manipulation, and distribution, the journal strives to achieve greater flexibility, efficiency, effectiveness, reliability, and security within digitalized and networked environments. Our scope provides a platform for discourse and dissemination of the latest developments in numerous research and innovation areas. These include electrical components and systems, smart grids, industrial cyber-physical systems, motion control, robotics and mechatronics, sensors and actuators, factory and building communication and automation, industrial digitalization, flexible and reconfigurable manufacturing, assistant systems, industrial applications of artificial intelligence and data science, as well as the implementation of machine learning, artificial neural networks, and fuzzy logic. Additionally, we explore human factors in digitalized and networked ecosystems. Join us in exploring and shaping the future of industrial electronics and digitalization.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信