Carbon Trends最新文献

筛选
英文 中文
Carbonaceous matrixes-based free-standing electrode materials for energy storage 基于碳基质的独立式储能电极材料
IF 3.1
Carbon Trends Pub Date : 2024-09-01 DOI: 10.1016/j.cartre.2024.100397
Xuan Li , Binbin Fan , Zhongde Wang , Guoqing Guan
{"title":"Carbonaceous matrixes-based free-standing electrode materials for energy storage","authors":"Xuan Li ,&nbsp;Binbin Fan ,&nbsp;Zhongde Wang ,&nbsp;Guoqing Guan","doi":"10.1016/j.cartre.2024.100397","DOIUrl":"10.1016/j.cartre.2024.100397","url":null,"abstract":"<div><p>Free-standing electrode materials provide many desirable properties for electrochemical energy storage devices due to their light weight, good conductive capacity, excellent mechanical strength, high energy/power density and extraordinary electrochemical stability. Particularly, carbonaceous matrix nanomaterials, such as graphene materials, carbon nanotubes, carbon nanofibers, carbon papers and carbon cloths, play important roles in the free-standing electrodes, including serving as conducting network skeleton, loading electrochemically active material, enhancing mechanical toughness and flexibility, and preventing the structural damage during charge/discharge processes. In this review, we give a systematic overview of the state-of-the-art research progress on carbonaceous matrixes-based free-standing electrode materials for electrochemical energy storage, from synthesis methods, structural design, to important applications in flexible energy storage devices including lithium-ion batteries, lithium-sulfur batteries, sodium-ion batteries, lithium-oxygen batteries, and supercapacitors for each class of matrix-based electrode materials. In particular, the structure design strategies utilizing the advantages of free-standing matrixes to address the existing issues and improve the electrochemical and mechanical performance of energy storage devices are discussed in detail. At the end, we also discuss the challenges and demonstrate the prospective for the future development of such materials for advanced flexible energy storage devices.</p></div>","PeriodicalId":52629,"journal":{"name":"Carbon Trends","volume":null,"pages":null},"PeriodicalIF":3.1,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2667056924000786/pdfft?md5=cffdc26b09b44b86cf29377183e2de88&pid=1-s2.0-S2667056924000786-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142098306","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Electronic properties of two-dimensional rectangular graphyne based on phenyl-like building blocks 基于类苯基结构单元的二维矩形石墨烯的电子特性
IF 3.1
Carbon Trends Pub Date : 2024-09-01 DOI: 10.1016/j.cartre.2024.100395
Anderson Gomes Vieira , Marcelo Lopes Pereira Júnior , Vincent Meunier , Eduardo Costa Girão
{"title":"Electronic properties of two-dimensional rectangular graphyne based on phenyl-like building blocks","authors":"Anderson Gomes Vieira ,&nbsp;Marcelo Lopes Pereira Júnior ,&nbsp;Vincent Meunier ,&nbsp;Eduardo Costa Girão","doi":"10.1016/j.cartre.2024.100395","DOIUrl":"10.1016/j.cartre.2024.100395","url":null,"abstract":"<div><p>A rectangular graphyne sheet is composed of units similar to phenyl rings that are linked by acetylenic chains, as in hexagonal <span><math><mi>γ</mi></math></span>-graphyne. This system is organized over a rectangular lattice similar to that of the recently synthesized biphenylene network. We investigate the stability of this layered material from different perspectives and study its electronic structure. Rectangular graphyne is a semiconducting system in its pristine form. It features a pair of highly localized states. These characteristics are correlated with the structural anisotropy of the system, since its frontier states behave like quasi-1D states embedded in the 2D lattice. We further consider modified systems in which longer acetylenic links are introduced. We discuss how a strategic choice of the position of these longer bridges leads to specific changes of the electronic structure of the rectangular graphyne sheet.</p></div>","PeriodicalId":52629,"journal":{"name":"Carbon Trends","volume":null,"pages":null},"PeriodicalIF":3.1,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2667056924000762/pdfft?md5=dd06661e84df7d0aa6b776407dcd7a5c&pid=1-s2.0-S2667056924000762-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142098307","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Photocatalytic performance of metal poly(heptazine imide) for carbon dioxide reduction 用于还原二氧化碳的金属聚(庚嗪亚胺)的光催化性能
IF 3.1
Carbon Trends Pub Date : 2024-08-19 DOI: 10.1016/j.cartre.2024.100396
Aika Yamaguchi, Chihiro Miyazaki, Yunosuke Takezawa, Goichiro Seo, Yuki Saito, Ryosuke Ohnuki, Shinya Yoshioka, Kaname Kanai
{"title":"Photocatalytic performance of metal poly(heptazine imide) for carbon dioxide reduction","authors":"Aika Yamaguchi,&nbsp;Chihiro Miyazaki,&nbsp;Yunosuke Takezawa,&nbsp;Goichiro Seo,&nbsp;Yuki Saito,&nbsp;Ryosuke Ohnuki,&nbsp;Shinya Yoshioka,&nbsp;Kaname Kanai","doi":"10.1016/j.cartre.2024.100396","DOIUrl":"10.1016/j.cartre.2024.100396","url":null,"abstract":"<div><p>Poly(heptazine imide) (PHI), a carbon nitride polymer, is a highly efficient visible-light-driven photocatalytic material. We aimed to improve its photocatalytic performance for CO<sub>2</sub> conversion. We prepared M-PHIs by encapsulating different metals (<em>M</em> = <em>K</em>, Li, Rb, and Na) and H-PHIs, in which the metal of each M-PHI was ion-exchanged with a proton. We evaluated their photocatalytic activities for CO<sub>2</sub> conversion and found that Na-PHI and H-PHI, prepared from Na-PHI (H-PHI(NaCl)), showed more than twice the CO production efficiency of melon and other PHIs.</p><p>The high CO production efficiency of Na-PHI and H-PHI(NaCl) was attributed to their extremely smaller particle size compared with those of the other PHIs. By closely examining the synthesis conditions of Na-PHI, we have identified a method to intentionally synthesize M-PHI with small particle size. These results provide a new strategy for highly efficient CO<sub>2</sub> conversion using PHI.</p></div>","PeriodicalId":52629,"journal":{"name":"Carbon Trends","volume":null,"pages":null},"PeriodicalIF":3.1,"publicationDate":"2024-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2667056924000774/pdfft?md5=912a300dfcfc2857fd587780ab6faf3f&pid=1-s2.0-S2667056924000774-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142044644","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Adsorption of Nefazodone on single-wall carbon nanotube as an antidepressant drug delivery: A DFT study 单壁碳纳米管对奈法唑酮作为抗抑郁药物递送的吸附:DFT 研究
IF 3.1
Carbon Trends Pub Date : 2024-08-18 DOI: 10.1016/j.cartre.2024.100394
Faegheh Yahyazadeh, Dadkhoda Ghazanfari, Sayed Ali Ahmadi, Mohammad Reza Akhgar
{"title":"Adsorption of Nefazodone on single-wall carbon nanotube as an antidepressant drug delivery: A DFT study","authors":"Faegheh Yahyazadeh,&nbsp;Dadkhoda Ghazanfari,&nbsp;Sayed Ali Ahmadi,&nbsp;Mohammad Reza Akhgar","doi":"10.1016/j.cartre.2024.100394","DOIUrl":"10.1016/j.cartre.2024.100394","url":null,"abstract":"<div><p>Nefazodone, a derivative of triazolones, belongs to a group of heterocyclic aromatic compounds. It is used as an antidepressant for treating depression, including major depressive disorder. Unlike other antidepressant groups such as selective serotonin reuptake inhibitors, tricyclic antidepressants, or monoamine oxidase inhibitors, Nefazodone does not share chemical similarities. Recent research has focused on studying the reactivity and chemical structure influenced by Nefazodone's medicinal features in the drug's adsorption process on single-wall Carbon Nanotube (CNT) as an adsorbent in the gas phase using density functional theory (DFT), Becke, 3-parameter, Lee–Yang–Parr (B3LYP) 6-311+<em>G</em>(d,p) basis set (DFT/B3LYP/6-311+<em>G</em>(d,p)). The effect of electronegative atoms and phenyl groups on the adsorption of Nefazodone on CNT has been studied by calculating the adsorption energy for all active sites. On the other hand, thermodynamic values, such as Gibbs free energy (−4873.09 kJ), Enthalpy (−4872.83 kJ), and Entropy (903.09 J/mol.kelvin), as well as thermodynamic capacity (497.45 J/mol.kelvin), were calculated to show the reactivity of Nefazodone. The stability and reactivity were examined through the energies of the highest occupied molecular orbital (HOMO) (−5.53 eV) and lowest unoccupied molecular orbital (LUMO) (−0.58 eV) of Nefazodone, highlighting ten regions with chemical activity, all of which are thermodynamically stable. Some Electronic parameters such as chemical potential (µ), electronegativity (χ), softness (σ), hardness (η), and electrophilicity index (ω) were calculated. The comparison of chemical potential values between Nefazodone(−3.05 eV) and the more stable complex (−3.81 eV) illustrates the more reactivity for the complex. This suggests that Nefazodone can be transferred to biological systems through such an adsorption mechanism.</p></div>","PeriodicalId":52629,"journal":{"name":"Carbon Trends","volume":null,"pages":null},"PeriodicalIF":3.1,"publicationDate":"2024-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2667056924000750/pdfft?md5=b6c7475c84cd2c79e83d83fc34fa29da&pid=1-s2.0-S2667056924000750-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142050395","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Simultaneous synthesis of sulfonated reduced graphene oxide@graphene oxide hybrid material for efficient electrochemical sensing of silver ions in drinking water 同时合成磺化还原氧化石墨烯@氧化石墨烯混合材料,用于饮用水中银离子的高效电化学传感
IF 3.1
Carbon Trends Pub Date : 2024-08-14 DOI: 10.1016/j.cartre.2024.100393
A.G. Kamaha Tchekep , V. Suryanarayanan , Deepak K. Pattanayak
{"title":"Simultaneous synthesis of sulfonated reduced graphene oxide@graphene oxide hybrid material for efficient electrochemical sensing of silver ions in drinking water","authors":"A.G. Kamaha Tchekep ,&nbsp;V. Suryanarayanan ,&nbsp;Deepak K. Pattanayak","doi":"10.1016/j.cartre.2024.100393","DOIUrl":"10.1016/j.cartre.2024.100393","url":null,"abstract":"<div><p>One of the most important concerns around the world nowadays is the drinking water quality. Silver ions (Ag<sup>+</sup>) are one of the heavy metal ions that can seriously degrade the water quality and therefore, the human health. Hence, the World Health Organization (WHO) fixed the maximum acceptable concentration of these ions in drinking water at approximately 0.93 µM. Thus, the development of cost-effective and efficient techniques and tools that can help to quantify Ag<sup>+</sup> ions in drinking water is of great importance. Herein, we used a new, simple, eco-friendly and low-cost synthesis route to synthesize a sustainable hybrid carbon material, namely sulfonated reduced graphene oxide@graphene oxide (S-rGO@GO) that was utilized as electrode material for Ag<sup>+</sup> ions electroanalysis in drinking water. The successful synthesis of S-rGO@GO was evidenced by XRD, Raman spectroscopy, XPS, FE-SEM and EDX. The electrochemical characterization of S-rGO@GO revealed its good affinities towards Ag<sup>+</sup> and its good electron transport abilities. The sensor prepared from S-rGO@GO (S-rGO@GO/GCE) showed good repeatability and reproducibility. S-rGO@GO/GCE optimization revealed that its best performance is achieved when 5 µL of 1 mg/mL of S-rGO@GO suspension in ultrapure water is used for its fabrication and when the electrodeposition (Ag<sup>+</sup> to Ag<sup>0</sup>) is carried out at -0.1 V vs. SCE for 200 s. The calibration of S-rGO@GO/GCE exhibited a linear relationship in the concentration range of 0.2 to 1.4 µM, with a sensitivity of (0.605 ± 0.015) µA/µM; the statistic LOD was found to be 0.0007 µM. Furthermore, S-rGO@GO/GCE has shown a great potential for real samples analysis.</p></div>","PeriodicalId":52629,"journal":{"name":"Carbon Trends","volume":null,"pages":null},"PeriodicalIF":3.1,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2667056924000749/pdfft?md5=ce24006dc5ccbc9530bfcab7fd5d8db3&pid=1-s2.0-S2667056924000749-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141985179","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Comprehensive study of optical contrast, reflectance, and Raman spectroscopy of multilayer graphene 多层石墨烯的光学对比、反射和拉曼光谱综合研究
IF 3.1
Carbon Trends Pub Date : 2024-08-13 DOI: 10.1016/j.cartre.2024.100389
Masahiro Kamada , Ken-ichi Sasaki , Tomohiro Matsui
{"title":"Comprehensive study of optical contrast, reflectance, and Raman spectroscopy of multilayer graphene","authors":"Masahiro Kamada ,&nbsp;Ken-ichi Sasaki ,&nbsp;Tomohiro Matsui","doi":"10.1016/j.cartre.2024.100389","DOIUrl":"10.1016/j.cartre.2024.100389","url":null,"abstract":"<div><p>Graphene research has developed quite rapidly partially because even a monatomic layer can be visualized with a conventional optical microscope. Although optical properties of multilayer graphene such as optical contrast, reflectance (<span><math><mi>R</mi></math></span>), and Raman scattering have been well studied, they are studied independently and the thickness dependence is limited to a rather thin region. In this paper, the evolution of optical properties by thickness from monolayer to multilayer graphene up to 107 nm thick is studied comprehensively. The empirically known change of color of multilayer graphene is confirmed from the R, G and B intensities extracted from the optical images. It is also found that, as far as <span><math><mi>R</mi></math></span> for visible light is concerned, multilayer graphene is not necessarily considered as a layered material, and the refractive index for monolayer graphene is applicable even for the thickest multilayer graphene flake in this study. On the other hand, the layered structure and Raman scattering at each layer are essential to reproduce the G-band intensity of Raman scattering (<span><math><msub><mrow><mi>I</mi></mrow><mrow><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></msub></math></span>). Not only the multiple reflection but also the interference of scattered Raman light should be considered for <span><math><msub><mrow><mi>I</mi></mrow><mrow><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></msub></math></span> of multilayer graphene thicker than <span><math><mo>∼</mo></math></span>30 nm.</p></div>","PeriodicalId":52629,"journal":{"name":"Carbon Trends","volume":null,"pages":null},"PeriodicalIF":3.1,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2667056924000701/pdfft?md5=cfad5c2caada47c47d988f0f9b7841ac&pid=1-s2.0-S2667056924000701-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142001751","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
In-situ banana fiber-modified carbonized bacterial cellulose as a free-standing and binder-free cathode host for potassium-sulfur batteries 原位香蕉纤维改性碳化细菌纤维素作为钾硫电池的独立、无粘结剂阴极主机
IF 3.1
Carbon Trends Pub Date : 2024-08-08 DOI: 10.1016/j.cartre.2024.100391
Ashish Priyam Goswami , Vikram Kishore Bharti , Chandra Shekhar Sharma , Mudrika Khandelwal
{"title":"In-situ banana fiber-modified carbonized bacterial cellulose as a free-standing and binder-free cathode host for potassium-sulfur batteries","authors":"Ashish Priyam Goswami ,&nbsp;Vikram Kishore Bharti ,&nbsp;Chandra Shekhar Sharma ,&nbsp;Mudrika Khandelwal","doi":"10.1016/j.cartre.2024.100391","DOIUrl":"10.1016/j.cartre.2024.100391","url":null,"abstract":"<div><p>To meet the growing energy demand for large-scale applications, potassium-sulfur batteries (KSBs) have gained enormous attention owing to their high energy density, natural abundance, and specific capacity. Nevertheless, the shuttle effect, the insulating nature of sulfur, and the large volume change hinder the development of KSBs. To address the different challenges of KSBs, we report eco-friendly and biodegradable in-situ banana fiber-modified carbonized bacterial cellulose as a free-standing and binder-free cathode (sulfur) host. The catholyte K<sub>2</sub>S<sub>6</sub> is used as active sulfur for cell fabrication owing to a high sulfur loading and even distribution of active material. However, introducing the catholyte induces the potassium side reaction by reacting to it. Therefore, carbonized bacterial cellulose is used as an interlayer to reduce the notorious polysulfide shuttle effect. As a result, the fabricated cell delivers a specific capacity of 437, 354, and 193 mAh g<sup>-1</sup> at the current density of 0.2, 0.7, and 1.2 C, respectively. During the long cycling, the cell shows excellent electrochemical performance for 200 cycles with a capacity retention of 78 % at 0.7 C. This work paves the way to utilize an eco-friendly and cost-effective approach to fabricate a high-performance KSB.</p></div>","PeriodicalId":52629,"journal":{"name":"Carbon Trends","volume":null,"pages":null},"PeriodicalIF":3.1,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2667056924000725/pdfft?md5=cc8bc0bfdf1014b640fef7f86af8d4a5&pid=1-s2.0-S2667056924000725-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141978062","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Chitosan-collagen-cerium hydroxyapatite nanocomposites for In-vitro gentamicin drug delivery and antibacterial properties 用于庆大霉素体外给药和抗菌的壳聚糖-胶原-羟基磷灰石铈纳米复合材料
IF 3.1
Carbon Trends Pub Date : 2024-08-08 DOI: 10.1016/j.cartre.2024.100392
Amauta Quilumbango , Sarah Briceño , Juan Fernando Ponce , Karla Vizuete , Alexis Debut , Javier Alvarez Botas , Gema González
{"title":"Chitosan-collagen-cerium hydroxyapatite nanocomposites for In-vitro gentamicin drug delivery and antibacterial properties","authors":"Amauta Quilumbango ,&nbsp;Sarah Briceño ,&nbsp;Juan Fernando Ponce ,&nbsp;Karla Vizuete ,&nbsp;Alexis Debut ,&nbsp;Javier Alvarez Botas ,&nbsp;Gema González","doi":"10.1016/j.cartre.2024.100392","DOIUrl":"10.1016/j.cartre.2024.100392","url":null,"abstract":"<div><p>The controlled release of antibiotics is crucial to improving antimicrobial efficacy, reducing the risk of bacterial resistance, and ensuring a localized therapeutic effect. In this work, <em>In-vitro</em> Gentamicin release was studied using fluorescence chitosan collagen-cerium hydroxyapatite nanocomposites. Cerium-hydroxyapatite nanoparticles were synthesized using the hydrothermal method, and the nanocomposites were prepared by mixing chitosan-collagen-cerium hydroxyapatite at different weight ratios. Structural characterization was conducted using scanning electron microscopy, transmission electron microscopy, Fourier transform infrared spectroscopy, Raman spectroscopy, and fluorescence microscopy. Ultraviolet–visible spectroscopy (UV–Vis) was used to quantify the release of gentamicin in simulated body fluid. Results showed that hydroxyapatite releases 90 % of gentamicin in the first 10 min, and the Chitosan-collagen-cerium hydroxyapatite nanocomposites release 80 % of gentamicin after 2 h. The antibacterial activity was studied against <em>Escherichia coli (E. coli)</em> at different time intervals. These nanocomposites can potentially improve the performance of biomedical applications.</p></div>","PeriodicalId":52629,"journal":{"name":"Carbon Trends","volume":null,"pages":null},"PeriodicalIF":3.1,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2667056924000737/pdfft?md5=a9b58f9bd163a94a053fcecfd203a167&pid=1-s2.0-S2667056924000737-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141964065","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Carbon nanotuballs: Can they drive the future of nanofibers? 纳米碳管:它们能否推动纳米纤维的未来?
IF 3.1
Carbon Trends Pub Date : 2024-08-04 DOI: 10.1016/j.cartre.2024.100390
Georgios I. Giannopoulos
{"title":"Carbon nanotuballs: Can they drive the future of nanofibers?","authors":"Georgios I. Giannopoulos","doi":"10.1016/j.cartre.2024.100390","DOIUrl":"10.1016/j.cartre.2024.100390","url":null,"abstract":"<div><p>Nanofibers are extremely thin fibers produced from materials such as carbon, polymers, ceramics, and metals with diameters in the nanometer range that gained significant interest due to their unique properties. Carbon nanotubes, which could be considered the most popular fibers in the nanoscale, have gained widespread recognition primarily due to their remarkable strength derived from their cylindrical hexagonal lattice formed by carbon covalent bonds. Here, a new family of carbon nanofibers is proposed, arising from the combination of the tubular hexagonal configuration of carbon nanotubes and the spherical nanostructure of carbon fullerenes. These novel nanofibers, hereafter named carbon nanotuballs, are expected to demonstrate new advantaged characteristics such as better cross-section properties, enhanced interfacial interactions, and other unique physical attributes when used as fillers within other phases. Some preliminary theoretical investigations based on molecular dynamics are provided here to test the structural stability and mechanical behaviour of some single-walled carbon nanotuballs.</p></div>","PeriodicalId":52629,"journal":{"name":"Carbon Trends","volume":null,"pages":null},"PeriodicalIF":3.1,"publicationDate":"2024-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2667056924000713/pdfft?md5=daccaf1951af17fdb4a3b76ad456f233&pid=1-s2.0-S2667056924000713-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141961937","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Novel approach to produce 3D boron-doped diamond for pollutant removal from water 生产用于去除水中污染物的三维掺硼金刚石的新方法
IF 3.1
Carbon Trends Pub Date : 2024-07-28 DOI: 10.1016/j.cartre.2024.100386
L.G. Vernasqui, A.F. Sardinha, E.J. Corat, N.G. Ferreira
{"title":"Novel approach to produce 3D boron-doped diamond for pollutant removal from water","authors":"L.G. Vernasqui,&nbsp;A.F. Sardinha,&nbsp;E.J. Corat,&nbsp;N.G. Ferreira","doi":"10.1016/j.cartre.2024.100386","DOIUrl":"10.1016/j.cartre.2024.100386","url":null,"abstract":"<div><p>Diamond growth from Chemical Vapor Deposition (CVD) on foreign substrates can require different pretreatment not only to improve the film nucleation but also to assure its adhesion by decreasing the expected film/substrate interface stress. To improve boron-doped film nucleation, growth, and adherence, different substrate pretreatments have been used mainly from the seeding process with diamond powder at various particle sizes. Despite this, the development of diamond growth on a Ti mesh remains difficult because of the requirement of a cohesive film to cover a 3D macroporous sample with varying growth rates based on its distinct network geometry. Then, this work describes a novel approach to growing boron-doped diamond (BDD) and boron-doped ultrananocrystalline diamond (B-UNCD) on titanium dioxide nanotubes (TDNT) produced simultaneously on both sides of Ti mesh by an anodization process. The films were obtained from two-step growth processes by assuring the entire diamond overlay on both TDNT/Ti mesh sides, including their outer/inner surfaces, as a 3D sample. TiO<sub>2</sub> - TiC conversion has dominated the renucleation process, facilitating the nanometric scale control. The film morphologies were systematically analyzed by FEG-SEM images at different sample planes and depths for both sample sides at different stages of film growth. The unique morphology of titania nanotubes associated with columnar and/or renucleation development of BDD, considering the film defects and valley, can systematically increase the electrode specific area. Raman spectra showed the film quality and its micro and/or ultrananodiamond structure and the boron doping features. Also, this growth process allowed a dopant-controlled adjustable conductivity. Then, the boron doping levels for both films were evaluated from Mott-Schottky plots at around 10<sup>19</sup> Bcm<sup>−3</sup>, characterizing them with good conductivity. In addition, electrochemical measurements from Cyclic Voltammetry (CV) confirmed the expected diamond response on redox pair following the quasi-reversible criteria as high-performance diamond electrodes and in situ Raman spectroelectrochemical measurements assessed the stability of samples during electrochemical measurements, ensuring structural integrity. Finally, the samples were applied to the degradation of methylene blue, proving to be superior materials for electrochemical applications due to their advantages compared to those of similar 2D electrodes.</p></div>","PeriodicalId":52629,"journal":{"name":"Carbon Trends","volume":null,"pages":null},"PeriodicalIF":3.1,"publicationDate":"2024-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2667056924000671/pdfft?md5=22cffc8fbedaac5a3d2b3cdb13939942&pid=1-s2.0-S2667056924000671-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141843673","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信