Subrata Ghosh , Massimiliano Righi , Andrea Macrelli , Francesco Goto , Marco Agozzino , Gianlorenzo Bussetti , Valeria Russo , Andrea Li Bassi , Carlo S. Casari
{"title":"Low-density functionalized amorphous carbon nanofoam as binder-free Thin-film Supercapacitor electrode","authors":"Subrata Ghosh , Massimiliano Righi , Andrea Macrelli , Francesco Goto , Marco Agozzino , Gianlorenzo Bussetti , Valeria Russo , Andrea Li Bassi , Carlo S. Casari","doi":"10.1016/j.cartre.2025.100516","DOIUrl":null,"url":null,"abstract":"<div><div>Nanoporous carbon materials containing small domains of <em>sp</em><sup>2</sup>-carbon with highly disordered structures are promising for supercapacitor applications. Herein, we synthesize amorphous carbon nanofoam with 98% volumetric void fraction and low mass density of around 30 mg/cm<sup>3</sup> by pulsed laser deposition at room temperature. With the unavoidable oxygen functional groups on the nanoporous surface, carbon nanofoam and nitrogen-functionalized carbon nanofoams are directly grown on the desired substrate under different background gases (Ar, N<sub>2</sub>, N<sub>2</sub><sub><img></sub>H<sub>2</sub>)<sub>,</sub> and employed as supercapacitor electrodes. Among the background gases used in synthesis, the use of nitrogen yields nanofoam with higher thickness and more N-content with higher graphitic-N. From the test of amorphous carbon nanofoam supercapacitor device, nitrogenated amorphous carbon electrode shows a higher areal capacitance of 4.1 mF/cm<sup>2</sup> at 20 mV/s in aqueous electrolyte, a better capacitance retention at higher current, and excellent cycle stability (98%) over 10,000 charge-discharge cycles are achieved compared to not-functionalized counterpart prepared under Ar background gas (2.7 mF/cm<sup>2</sup> and cycle stability of 88%).</div></div>","PeriodicalId":52629,"journal":{"name":"Carbon Trends","volume":"20 ","pages":"Article 100516"},"PeriodicalIF":3.1000,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbon Trends","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667056925000665","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Nanoporous carbon materials containing small domains of sp2-carbon with highly disordered structures are promising for supercapacitor applications. Herein, we synthesize amorphous carbon nanofoam with 98% volumetric void fraction and low mass density of around 30 mg/cm3 by pulsed laser deposition at room temperature. With the unavoidable oxygen functional groups on the nanoporous surface, carbon nanofoam and nitrogen-functionalized carbon nanofoams are directly grown on the desired substrate under different background gases (Ar, N2, N2H2), and employed as supercapacitor electrodes. Among the background gases used in synthesis, the use of nitrogen yields nanofoam with higher thickness and more N-content with higher graphitic-N. From the test of amorphous carbon nanofoam supercapacitor device, nitrogenated amorphous carbon electrode shows a higher areal capacitance of 4.1 mF/cm2 at 20 mV/s in aqueous electrolyte, a better capacitance retention at higher current, and excellent cycle stability (98%) over 10,000 charge-discharge cycles are achieved compared to not-functionalized counterpart prepared under Ar background gas (2.7 mF/cm2 and cycle stability of 88%).