Low-energy consumption rapid synthesis of high-fluorescence nitrogen-doped carbon dots at room temperature using a combusted shrimp shell combined solution and application to catechins detection
{"title":"Low-energy consumption rapid synthesis of high-fluorescence nitrogen-doped carbon dots at room temperature using a combusted shrimp shell combined solution and application to catechins detection","authors":"Yi Chen Huang, Jun Yi Wu","doi":"10.1016/j.cartre.2025.100515","DOIUrl":null,"url":null,"abstract":"<div><div>Shrimp shells are used as the carbon and nitrogen source to produce high-fluorescence nitrogen-carbon dots at room temperature by employing a cutting process based on NaCl crystals without added nitrogen-doped agents. The synthesis process is rapid (<5 min) and easy. The synthesized nitrogen-doped carbon dots (NCDs) are characterized using photoluminescence (PL) spectroscopy, transmission electron microscopy (TEM), scan electron microscopy (SEM), Fourier-transform infrared (FTIR) spectroscopy, and energy dispersive X-ray (EDX) analysis. The synthesized NCDs exhibit high fluorescence and are effectively used in the instant and fast detection of tea freshness.</div></div>","PeriodicalId":52629,"journal":{"name":"Carbon Trends","volume":"20 ","pages":"Article 100515"},"PeriodicalIF":3.1000,"publicationDate":"2025-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbon Trends","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667056925000653","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Shrimp shells are used as the carbon and nitrogen source to produce high-fluorescence nitrogen-carbon dots at room temperature by employing a cutting process based on NaCl crystals without added nitrogen-doped agents. The synthesis process is rapid (<5 min) and easy. The synthesized nitrogen-doped carbon dots (NCDs) are characterized using photoluminescence (PL) spectroscopy, transmission electron microscopy (TEM), scan electron microscopy (SEM), Fourier-transform infrared (FTIR) spectroscopy, and energy dispersive X-ray (EDX) analysis. The synthesized NCDs exhibit high fluorescence and are effectively used in the instant and fast detection of tea freshness.