Organic bistable memory devices utilizing PMMA polymer matrix-based ZnOC60 core-shell QDs nanocomposites

IF 3.1 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Jaeho Shim , Jinseo Park , Seok-Ho Seo , Ju Hee You , Dong Ick Son
{"title":"Organic bistable memory devices utilizing PMMA polymer matrix-based ZnOC60 core-shell QDs nanocomposites","authors":"Jaeho Shim ,&nbsp;Jinseo Park ,&nbsp;Seok-Ho Seo ,&nbsp;Ju Hee You ,&nbsp;Dong Ick Son","doi":"10.1016/j.cartre.2025.100517","DOIUrl":null,"url":null,"abstract":"<div><div>This study explores the development of organic bistable memory devices (OBMDs) leveraging ZnO-fullerene (C<sub>60</sub>) core-shell QDs embedded within a poly(methyl methacrylate) (PMMA) polymer matrix. Employing a spin-coating methodology, ZnO QDs were encapsulated with fullerene C<sub>60</sub>, a molecule renowned for its high electron affinity, to establish a robust core-shell configuration. This design significantly enhanced quantum confinement and provided efficient charge trapping capabilities. Structural analyses using transmission electron microscopy (TEM) confirmed the uniform dispersion and precise formation of ZnO<img>C<sub>60</sub> QDs, exhibiting an average particle size of approximately 10 nm within the polymer matrix. The electrical performance of Al/ZnO<img>C<sub>60</sub> QD-embedded PMMA/ITO devices was evaluated at 300 K, revealing clear bistable characteristics. The devices achieved a high ON/OFF current ratio of 7.46 × 10<sup>3</sup>, demonstrated exceptional cycling endurance exceeding 1.5 × 10<sup>4</sup> cycles, and exhibited long-term retention surpassing 1.2 × 105 s. Detailed analysis of current-voltage (I-V) data highlighted Fowler-Nordheim (F-N) tunneling as a key mechanism facilitating efficient memory operation. These findings underscore the potential of ZnO<img>C<sub>60</sub> core-shell QDs as a transformative material system for advanced non-volatile memory technologies. This work provides a foundation for further exploration into scalable and energy-efficient memory devices suitable for next-generation electronics and optoelectronics.</div></div>","PeriodicalId":52629,"journal":{"name":"Carbon Trends","volume":"20 ","pages":"Article 100517"},"PeriodicalIF":3.1000,"publicationDate":"2025-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbon Trends","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667056925000677","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

This study explores the development of organic bistable memory devices (OBMDs) leveraging ZnO-fullerene (C60) core-shell QDs embedded within a poly(methyl methacrylate) (PMMA) polymer matrix. Employing a spin-coating methodology, ZnO QDs were encapsulated with fullerene C60, a molecule renowned for its high electron affinity, to establish a robust core-shell configuration. This design significantly enhanced quantum confinement and provided efficient charge trapping capabilities. Structural analyses using transmission electron microscopy (TEM) confirmed the uniform dispersion and precise formation of ZnOC60 QDs, exhibiting an average particle size of approximately 10 nm within the polymer matrix. The electrical performance of Al/ZnOC60 QD-embedded PMMA/ITO devices was evaluated at 300 K, revealing clear bistable characteristics. The devices achieved a high ON/OFF current ratio of 7.46 × 103, demonstrated exceptional cycling endurance exceeding 1.5 × 104 cycles, and exhibited long-term retention surpassing 1.2 × 105 s. Detailed analysis of current-voltage (I-V) data highlighted Fowler-Nordheim (F-N) tunneling as a key mechanism facilitating efficient memory operation. These findings underscore the potential of ZnOC60 core-shell QDs as a transformative material system for advanced non-volatile memory technologies. This work provides a foundation for further exploration into scalable and energy-efficient memory devices suitable for next-generation electronics and optoelectronics.
基于PMMA聚合物基zno60核壳量子点纳米复合材料的有机双稳态存储器件
本研究探讨了利用zno -富勒烯(C60)核壳量子点嵌入聚甲基丙烯酸甲酯(PMMA)聚合物基体中的有机双稳态存储器件(obmd)的发展。采用自旋涂层方法,将ZnO量子点包裹在富勒烯C60(一种以其高电子亲和性而闻名的分子)中,以建立坚固的核壳结构。该设计显著增强了量子约束并提供了有效的电荷捕获能力。透射电子显微镜(TEM)的结构分析证实了ZnOC60量子点的均匀分散和精确形成,显示出聚合物基体内的平均粒径约为10 nm。在300 K下对Al/ZnOC60 qd嵌入PMMA/ITO器件的电学性能进行了评估,显示出明显的双稳态特性。该器件实现了7.46 × 103的高开/关电流比,具有超过1.5 × 104次的超长循环续航能力,并具有超过1.2 × 105 s的长期保持能力。电流-电压(I-V)数据的详细分析强调了Fowler-Nordheim (F-N)隧道效应是促进高效内存操作的关键机制。这些发现强调了ZnOC60核壳量子点作为先进非易失性存储技术的变革性材料系统的潜力。这项工作为进一步探索适用于下一代电子和光电子的可扩展和节能存储器件提供了基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Carbon Trends
Carbon Trends Materials Science-Materials Science (miscellaneous)
CiteScore
4.60
自引率
0.00%
发文量
88
审稿时长
77 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信