Current Opinion in Environmental Science and Health最新文献

筛选
英文 中文
Regenerative resource recovery from wastewater: State-of-the-art bio-based soft technology 废水再生资源回收:最先进的生物基软技术
IF 6.7
Current Opinion in Environmental Science and Health Pub Date : 2025-02-01 DOI: 10.1016/j.coesh.2024.100587
Prabhakar Sharma , Simranjeet Singh , Praveen C. Ramamurthy , Joginder Singh , Jayanta Kumar Biswas
{"title":"Regenerative resource recovery from wastewater: State-of-the-art bio-based soft technology","authors":"Prabhakar Sharma ,&nbsp;Simranjeet Singh ,&nbsp;Praveen C. Ramamurthy ,&nbsp;Joginder Singh ,&nbsp;Jayanta Kumar Biswas","doi":"10.1016/j.coesh.2024.100587","DOIUrl":"10.1016/j.coesh.2024.100587","url":null,"abstract":"<div><div>The wastewater treatment consists of a resource recovery approach driven by the growing demand for sustainable solutions to address environmental pollution and resource scarcity. This paper aims to provide a comprehensive overview of regenerative resource recovery from wastewater using bio-based soft technologies. It highlights the current state-of-the-art methodologies and stresses their significance in promoting sustainable wastewater management. The paper outlines various bio-based soft technologies, their principles, successful applications, and case studies. It also reports the advantages and limitations of these technologies, offering insights into their integration with existing systems and potential future advancements in promoting these technologies for effective wastewater management. It has the potential to revolutionize wastewater treatment with more efficient resource recovery, improved scalability, and broader integration into global wastewater management systems.</div></div>","PeriodicalId":52296,"journal":{"name":"Current Opinion in Environmental Science and Health","volume":"43 ","pages":"Article 100587"},"PeriodicalIF":6.7,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143096877","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Harnessing sustainable biochar-based composites for effective PFAS removal from wastewater 利用可持续生物炭基复合材料有效去除废水中的PFAS
IF 6.7
Current Opinion in Environmental Science and Health Pub Date : 2025-02-01 DOI: 10.1016/j.coesh.2025.100594
Abhishek Kumar , Wasim Akram Shaikh , Hakim Mudasir Maqsood , Sanjai J. Parikh , Jayanta Kumar Biswas
{"title":"Harnessing sustainable biochar-based composites for effective PFAS removal from wastewater","authors":"Abhishek Kumar ,&nbsp;Wasim Akram Shaikh ,&nbsp;Hakim Mudasir Maqsood ,&nbsp;Sanjai J. Parikh ,&nbsp;Jayanta Kumar Biswas","doi":"10.1016/j.coesh.2025.100594","DOIUrl":"10.1016/j.coesh.2025.100594","url":null,"abstract":"<div><div>Perfluoroalkyl and polyfluoroalkyl substances (PFAS) have garnered significant attention because of their persistence and detrimental environmental impacts, posing major challenges in wastewater treatment. Yet, traditional treatment methods fall short of providing a sustainable solution. This study argues that biochar-based composites represent the most promising innovative solution for PFAS remediation. Biochar, produced through the pyrolysis of organic materials, possesses beneficial properties such as high porosity, surface area, and surface functionality, making it highly effective in removing various environmental pollutants. Recent advancements in biochar technology, such as incorporating materials like metal oxides, nanoparticles, metal–organic frameworks, and functionalized polymers, have only increased its efficacy. This article explores the latest developments in biochar-based PFAS removal, including adsorption mechanisms, while critically addressing the current limitations. The findings indicate that biochar-based composites offer a scalable, practical, and effective approach to mitigating PFAS contamination, and should be prioritized over conventional treatment methods.</div></div>","PeriodicalId":52296,"journal":{"name":"Current Opinion in Environmental Science and Health","volume":"43 ","pages":"Article 100594"},"PeriodicalIF":6.7,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143096874","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Microbial degradation of bisphenol A – A mini-review 微生物降解双酚A - A的综述
IF 6.7
Current Opinion in Environmental Science and Health Pub Date : 2025-02-01 DOI: 10.1016/j.coesh.2025.100595
Guorong Yi , Xuan Wu , Kuok Ho Daniel Tang , Ronghua Li
{"title":"Microbial degradation of bisphenol A – A mini-review","authors":"Guorong Yi ,&nbsp;Xuan Wu ,&nbsp;Kuok Ho Daniel Tang ,&nbsp;Ronghua Li","doi":"10.1016/j.coesh.2025.100595","DOIUrl":"10.1016/j.coesh.2025.100595","url":null,"abstract":"<div><div>Bisphenol A (BPA) is an emerging organic contaminant, which is widely used in plastic production and has estrogenic activity, but its accumulation in the environment is increasing due to the extensive use of BPA-containing products. In the natural environment, specific bacteria or fungi can metabolize BPA, converting it into non-toxic or less harmful substances. However, the biodegradation of BPA is a complex and variable process, with its efficiency being influenced by environmental conditions, microbial species, and their activities. This paper analyzes the efficiency of microbial BPA degradation, reviews current research, summarizes the mechanisms and metabolic pathways involved, and provides insights for future research directions.</div></div>","PeriodicalId":52296,"journal":{"name":"Current Opinion in Environmental Science and Health","volume":"43 ","pages":"Article 100595"},"PeriodicalIF":6.7,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143096871","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Warning the environmental risks of emerging contaminants on low-carbon sludge anaerobic digestion treatment 对低碳污泥厌氧消化处理中新出现污染物的环境风险进行了预警
IF 6.7
Current Opinion in Environmental Science and Health Pub Date : 2025-02-01 DOI: 10.1016/j.coesh.2025.100592
Feng Wang , Chenxin Zhao , Xiong Shi , Yang Wu , Jingyang Luo
{"title":"Warning the environmental risks of emerging contaminants on low-carbon sludge anaerobic digestion treatment","authors":"Feng Wang ,&nbsp;Chenxin Zhao ,&nbsp;Xiong Shi ,&nbsp;Yang Wu ,&nbsp;Jingyang Luo","doi":"10.1016/j.coesh.2025.100592","DOIUrl":"10.1016/j.coesh.2025.100592","url":null,"abstract":"<div><div>Emerging contaminants (ECs) in waste-activated sludge (WAS) pose significant risks to ecosystems and human health. Anaerobic digestion (AD), a microbial-driven waste management technology, is particularly vulnerable to interference from ECs. This review comprehensively explores the effects of various ECs, including pharmaceuticals, personal care products, endocrine-disrupting chemicals, perfluoroalkyl and polyfluoroalkyl substances, and microplastics, on AD processes and their underlying mechanisms. ECs typically inhibit sludge digestion by disrupting extracellular polymeric substance structures, altering enzyme activity, and affecting microbial communities and metabolic functions. However, at low concentrations, some microorganisms can adapt and restore methane production. Addressing the synergistic and antagonistic interactions of multiple ECs, which complicate treatment outcomes, is critical. Additionally, ECs alter the removal of resistance genes during AD by reshaping microbial host structures, enhancing horizontal gene transfer, and activating reaction pathways, increasing ecological risks. AD also demonstrates limited efficiency in degrading ECs, reducing the quality of digestate as biofertilizer and potentially impacting human health via the food chain. To improve AD efficiency in the presence of ECs, strategies such as source control, pretreatment, and novel green technologies are proposed. This review provides key insights into optimizing AD performance and resilience for EC-laden organic waste, emphasizing integrated and adaptive approaches to meet evolving challenges.</div></div>","PeriodicalId":52296,"journal":{"name":"Current Opinion in Environmental Science and Health","volume":"43 ","pages":"Article 100592"},"PeriodicalIF":6.7,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143096873","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Per- and polyfluoroalkyl substances (PFAS): An emerging environmental challenge and (microbial)bioelectrochemical treatment strategies 全氟和多氟烷基物质:新出现的环境挑战和(微生物)生物电化学处理策略
IF 6.7
Current Opinion in Environmental Science and Health Pub Date : 2025-02-01 DOI: 10.1016/j.coesh.2024.100588
Md Tabish Noori , Priyanka Gupta , Klaus Hellgardt , Booki Min
{"title":"Per- and polyfluoroalkyl substances (PFAS): An emerging environmental challenge and (microbial)bioelectrochemical treatment strategies","authors":"Md Tabish Noori ,&nbsp;Priyanka Gupta ,&nbsp;Klaus Hellgardt ,&nbsp;Booki Min","doi":"10.1016/j.coesh.2024.100588","DOIUrl":"10.1016/j.coesh.2024.100588","url":null,"abstract":"<div><div>Accumulation of per- and polyfluoroalkyl substances (PFAS) in soil, sediment, and water poses significant public health risks due to their persistence and potential toxicity. PFAS compound possesses strong C – F bonds that require very high energy to break, making current technology unsustainable and challenging for large-scale treatment. Recent mechanistic insights into microbial degradation of PFAS offer promising solutions for their sustainable degradation. Specifically, bioelectrochemical systems can effectively break the strong C – F bonds in PFAS using high-energy electrons generated from electroactive microbes at a conductive anode electrode, achieving an astonishing removal efficiency of up to 96 %. However, these systems are still experimental, requiring further optimization for successful large-scale applications. This concise yet detailed review aims to enhance understanding of the emergence of PFAS as a pervasive potent chemical, microbe-assisted degradation mechanisms, and microbial community analysis, guiding future research and policy development for improved public health and environmental management.</div></div>","PeriodicalId":52296,"journal":{"name":"Current Opinion in Environmental Science and Health","volume":"43 ","pages":"Article 100588"},"PeriodicalIF":6.7,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143096876","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Agrochemical pollution: A serious threat to environmental health 农用化学品污染:严重威胁环境健康
IF 6.7
Current Opinion in Environmental Science and Health Pub Date : 2025-02-01 DOI: 10.1016/j.coesh.2025.100597
Punniyakotti Elumalai , Xuke Gao , Punniyakotti Parthipan , Junyu Luo , Jinjie Cui
{"title":"Agrochemical pollution: A serious threat to environmental health","authors":"Punniyakotti Elumalai ,&nbsp;Xuke Gao ,&nbsp;Punniyakotti Parthipan ,&nbsp;Junyu Luo ,&nbsp;Jinjie Cui","doi":"10.1016/j.coesh.2025.100597","DOIUrl":"10.1016/j.coesh.2025.100597","url":null,"abstract":"<div><div>Over the past two decades, global consumption of agrochemicals has risen considerably. These chemicals are hazardous to air, soil, freshwater, marine microorganisms, plants, animals, and humans. This review examines worldwide agrochemical consumption trends from 2001 to 2021. It discusses environmental emissions of nitrous oxide, nitric oxide, and ammonia from nitrogen fertilizers. The review highlights the impact of various pesticide residues on air, soil, water, animals, and human health. This review also explores the influence of agrochemical pollution on climatic change, including its contribution to greenhouse gas emissions and its effects on temperature and rainfall patterns. Finally, we outline the global actions undertaken by organizations such as UNFAO, UNEP, WHO, and EC to address agrochemical pollution and promote control strategies. This review underscores the negative effects of agrochemical pollution on ecosystems and suggests that reducing agrochemical usage, implementing integrated pest management, and promoting organic farming can help mitigate its environmental impact.</div></div>","PeriodicalId":52296,"journal":{"name":"Current Opinion in Environmental Science and Health","volume":"43 ","pages":"Article 100597"},"PeriodicalIF":6.7,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143096875","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Unintended effects of Bacillus thuringiensis spores and Cry toxins used as microbial insecticides on non-target organisms 苏云金芽孢杆菌孢子和苏云金芽孢杆菌毒素作为微生物杀虫剂对非目标生物的意外影响
IF 6.7
Current Opinion in Environmental Science and Health Pub Date : 2025-02-01 DOI: 10.1016/j.coesh.2025.100598
Raphaël Rousset , Armel Gallet
{"title":"Unintended effects of Bacillus thuringiensis spores and Cry toxins used as microbial insecticides on non-target organisms","authors":"Raphaël Rousset ,&nbsp;Armel Gallet","doi":"10.1016/j.coesh.2025.100598","DOIUrl":"10.1016/j.coesh.2025.100598","url":null,"abstract":"<div><div><em>Bacillus thuringiensis</em> (<em>Bt</em>) microbial insecticides owe their effectiveness mostly to Cry toxins that target specific insects. <em>Bt</em> products are made of spores of <em>Bt</em> and crystals of toxins, Cry toxins being also used in genetically modified crops. Although widely used in agriculture, data on their long-term effects are scarce. Because microbial insecticides are essential to the development of sustainable agriculture, more research is needed to understand the unintended effects of <em>Bt</em> products and to improve <em>Bt</em> products and applications, ultimately leading to safer agricultural practices. In this review, we focus on recent studies dealing with the persistence and unintended effects of the main components of <em>Bt</em> insecticidal products, namely Cry toxins, spores and vegetative cells.</div></div>","PeriodicalId":52296,"journal":{"name":"Current Opinion in Environmental Science and Health","volume":"43 ","pages":"Article 100598"},"PeriodicalIF":6.7,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143218874","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Dissemination of antibiotic resistance genes in soil-crop systems: Mechanisms and influencing factors 抗生素抗性基因在土壤-作物系统中的传播:机制和影响因素
IF 6.7
Current Opinion in Environmental Science and Health Pub Date : 2025-02-01 DOI: 10.1016/j.coesh.2025.100593
Yuanye Zeng , Fengxia Yang , Zulin Zhang , Haixin Guo , Yongzhen Ding
{"title":"Dissemination of antibiotic resistance genes in soil-crop systems: Mechanisms and influencing factors","authors":"Yuanye Zeng ,&nbsp;Fengxia Yang ,&nbsp;Zulin Zhang ,&nbsp;Haixin Guo ,&nbsp;Yongzhen Ding","doi":"10.1016/j.coesh.2025.100593","DOIUrl":"10.1016/j.coesh.2025.100593","url":null,"abstract":"<div><div>Agricultural soil fertility increases when livestock manure is used as an organic fertilizer. However, it spreads antibiotic resistance genes (ARGs) across agricultural land, endangering food safety and the environment. The processes of ARG diffusion in soil-crop systems were examined in the present study, along with the effects of plant root exudates and soil physicochemical characteristics. Effects of soil moisture, pH, and REDOX potential on microbial communities and ARG dynamics were analyzed, along with the ARG transfer to plants through root uptake and endophytic colonization. Furthermore, the implications of ARG dissemination for soil health, crop safety, and human health were examined, highlighting the necessity for a thorough understanding of these interactions to formulate effective ARG mitigation strategies. This review will aid future research on the long-term environmental impact of ARGs and assist in developing effective control measures to promote sustainable agricultural development and food safety.</div></div>","PeriodicalId":52296,"journal":{"name":"Current Opinion in Environmental Science and Health","volume":"43 ","pages":"Article 100593"},"PeriodicalIF":6.7,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143096872","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Selective actions of plant-based biorational insecticides: Molecular mechanisms and reduced risks to non-target organisms 植物基生物杀虫剂的选择性作用:分子机制和降低对非目标生物的风险
IF 6.7
Current Opinion in Environmental Science and Health Pub Date : 2025-01-31 DOI: 10.1016/j.coesh.2025.100601
Lara T.M. Costa , Guy Smagghe , Luis O. Viteri Jumbo , Gil R. Santos , Raimundo W.S. Aguiar , Eugenio E. Oliveira
{"title":"Selective actions of plant-based biorational insecticides: Molecular mechanisms and reduced risks to non-target organisms","authors":"Lara T.M. Costa ,&nbsp;Guy Smagghe ,&nbsp;Luis O. Viteri Jumbo ,&nbsp;Gil R. Santos ,&nbsp;Raimundo W.S. Aguiar ,&nbsp;Eugenio E. Oliveira","doi":"10.1016/j.coesh.2025.100601","DOIUrl":"10.1016/j.coesh.2025.100601","url":null,"abstract":"<div><div>Plant-based biorational insecticides such as essential oils and extracts are complex mixtures of molecules that exhibit selective toxicity toward insect pests while minimizing harm to nontarget organisms (NTOs) such as pollinators, parasitoids, and predators. Recent investigations using clove (<em>Syzygium aromaticum</em>), Negramina (<em>Siparuna guianensis</em>), and common fig (<em>Ficus carica</em>) indicate that their essential oils and extracts generally exhibit lower toxicity to beneficial organisms than to target pests, potentially due to ecological factors like application timing. This review focuses on physiological selectivity, which involves preferential interactions between plant compounds and targets in pests versus NTOs. Advances in computational methods and genetic engineering enable the prediction of these interactions, revealing that plant compounds (e.g. β-caryophyllene, psoralen, sesquirosefuran, and eugenol) bind more effectively to specific enzymes and receptors in pest insects. By exploring these mechanisms, we highlight the potential of plant-based insecticides to reduce risks to NTOs and their role in sustainable pest management programs.</div></div>","PeriodicalId":52296,"journal":{"name":"Current Opinion in Environmental Science and Health","volume":"44 ","pages":"Article 100601"},"PeriodicalIF":6.7,"publicationDate":"2025-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143437976","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Rare earth elements in the age of climate change: Ecotoxicological insights and future directions 气候变化时代的稀土元素:生态毒理学见解和未来方向
IF 6.7
Current Opinion in Environmental Science and Health Pub Date : 2025-01-31 DOI: 10.1016/j.coesh.2025.100600
Camilla Mossotto , Mahdi Banaee , Antonia Concetta Elia , Marino Prearo , Paolo Pastorino , Caterina Faggio
{"title":"Rare earth elements in the age of climate change: Ecotoxicological insights and future directions","authors":"Camilla Mossotto ,&nbsp;Mahdi Banaee ,&nbsp;Antonia Concetta Elia ,&nbsp;Marino Prearo ,&nbsp;Paolo Pastorino ,&nbsp;Caterina Faggio","doi":"10.1016/j.coesh.2025.100600","DOIUrl":"10.1016/j.coesh.2025.100600","url":null,"abstract":"<div><div>Rare earth elements (REEs) are essential in several industries, particularly green technologies, but their increasing use is raising environmental concerns. This review examines the impact of REEs on ecosystems under climate change stressors. A bibliometric analysis revealed a scarcity of ecotoxicological studies, with a major focus on aquatic organisms due to the high vulnerability of aquatic ecosystems. Results indicate that some REEs may induce oxidative stress and disrupt physiological processes. Future research should prioritize interactions between REEs and other contaminants, improve experimental relevance, and increase species diversity to fully understand ecological effects.</div></div>","PeriodicalId":52296,"journal":{"name":"Current Opinion in Environmental Science and Health","volume":"44 ","pages":"Article 100600"},"PeriodicalIF":6.7,"publicationDate":"2025-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143455002","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信