Md Tabish Noori , Priyanka Gupta , Klaus Hellgardt , Booki Min
{"title":"全氟和多氟烷基物质:新出现的环境挑战和(微生物)生物电化学处理策略","authors":"Md Tabish Noori , Priyanka Gupta , Klaus Hellgardt , Booki Min","doi":"10.1016/j.coesh.2024.100588","DOIUrl":null,"url":null,"abstract":"<div><div>Accumulation of per- and polyfluoroalkyl substances (PFAS) in soil, sediment, and water poses significant public health risks due to their persistence and potential toxicity. PFAS compound possesses strong C – F bonds that require very high energy to break, making current technology unsustainable and challenging for large-scale treatment. Recent mechanistic insights into microbial degradation of PFAS offer promising solutions for their sustainable degradation. Specifically, bioelectrochemical systems can effectively break the strong C – F bonds in PFAS using high-energy electrons generated from electroactive microbes at a conductive anode electrode, achieving an astonishing removal efficiency of up to 96 %. However, these systems are still experimental, requiring further optimization for successful large-scale applications. This concise yet detailed review aims to enhance understanding of the emergence of PFAS as a pervasive potent chemical, microbe-assisted degradation mechanisms, and microbial community analysis, guiding future research and policy development for improved public health and environmental management.</div></div>","PeriodicalId":52296,"journal":{"name":"Current Opinion in Environmental Science and Health","volume":"43 ","pages":"Article 100588"},"PeriodicalIF":6.7000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Per- and polyfluoroalkyl substances (PFAS): An emerging environmental challenge and (microbial)bioelectrochemical treatment strategies\",\"authors\":\"Md Tabish Noori , Priyanka Gupta , Klaus Hellgardt , Booki Min\",\"doi\":\"10.1016/j.coesh.2024.100588\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Accumulation of per- and polyfluoroalkyl substances (PFAS) in soil, sediment, and water poses significant public health risks due to their persistence and potential toxicity. PFAS compound possesses strong C – F bonds that require very high energy to break, making current technology unsustainable and challenging for large-scale treatment. Recent mechanistic insights into microbial degradation of PFAS offer promising solutions for their sustainable degradation. Specifically, bioelectrochemical systems can effectively break the strong C – F bonds in PFAS using high-energy electrons generated from electroactive microbes at a conductive anode electrode, achieving an astonishing removal efficiency of up to 96 %. However, these systems are still experimental, requiring further optimization for successful large-scale applications. This concise yet detailed review aims to enhance understanding of the emergence of PFAS as a pervasive potent chemical, microbe-assisted degradation mechanisms, and microbial community analysis, guiding future research and policy development for improved public health and environmental management.</div></div>\",\"PeriodicalId\":52296,\"journal\":{\"name\":\"Current Opinion in Environmental Science and Health\",\"volume\":\"43 \",\"pages\":\"Article 100588\"},\"PeriodicalIF\":6.7000,\"publicationDate\":\"2025-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Opinion in Environmental Science and Health\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2468584424000588\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Opinion in Environmental Science and Health","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2468584424000588","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Per- and polyfluoroalkyl substances (PFAS): An emerging environmental challenge and (microbial)bioelectrochemical treatment strategies
Accumulation of per- and polyfluoroalkyl substances (PFAS) in soil, sediment, and water poses significant public health risks due to their persistence and potential toxicity. PFAS compound possesses strong C – F bonds that require very high energy to break, making current technology unsustainable and challenging for large-scale treatment. Recent mechanistic insights into microbial degradation of PFAS offer promising solutions for their sustainable degradation. Specifically, bioelectrochemical systems can effectively break the strong C – F bonds in PFAS using high-energy electrons generated from electroactive microbes at a conductive anode electrode, achieving an astonishing removal efficiency of up to 96 %. However, these systems are still experimental, requiring further optimization for successful large-scale applications. This concise yet detailed review aims to enhance understanding of the emergence of PFAS as a pervasive potent chemical, microbe-assisted degradation mechanisms, and microbial community analysis, guiding future research and policy development for improved public health and environmental management.