Biosurface and Biotribology最新文献

筛选
英文 中文
The Effect of Posterior Cruciate Ligament Reconstruction Operations on Contact Mechanics of the Tibiofemoral Joint 后交叉韧带重建手术对胫股关节接触力学的影响
IF 1.6
Biosurface and Biotribology Pub Date : 2025-06-18 DOI: 10.1049/bsb2.70007
Xin Jin, Peilin Wang, Dangdang Wang, Hui Ma, Zhihao Tang, Junyan Li
{"title":"The Effect of Posterior Cruciate Ligament Reconstruction Operations on Contact Mechanics of the Tibiofemoral Joint","authors":"Xin Jin,&nbsp;Peilin Wang,&nbsp;Dangdang Wang,&nbsp;Hui Ma,&nbsp;Zhihao Tang,&nbsp;Junyan Li","doi":"10.1049/bsb2.70007","DOIUrl":"https://doi.org/10.1049/bsb2.70007","url":null,"abstract":"<p>Patients undergoing posterior cruciate ligament (PCL) reconstruction may experience changes in the mechanical environment of cartilage and meniscus; however, limited information is available regarding the contact mechanism of the tibiofemoral joint following different PCL reconstruction techniques. In this study, finite element (FE) models of the PCL-reconstructed tibiofemoral joint—including the femur, tibia, fibula, menisci, cartilage and ligaments (ACL, PCL, MCL and LCL)—were developed with contact interactions among these tissues considered. Joint angles and axial forces based on the ISO 14243-3 were used as inputs. Using these FE models, the effect of different PCL reconstruction techniques on contact pressure, stresses of the cartilages and menisci and tibiofemoral kinematics was evaluated. Compared to the intact model, PCL-reconstructed models exhibited reduced anterior translation during swing phase and reduced external rotation during stance phase. The external rotation of the TA model was greater than that of the intact model, TI model and TL model during swing phase. The medial meniscus of the PCL-reconstructed models experienced lower contact pressure and stresses compared to that in the intact model. The altered kinematics and contact mechanics of the PCL-reconstructed models demonstrate that the typical PCL reconstruction techniques should be improved or adjusted to better restore the natural biomechanical function of the joint.</p>","PeriodicalId":52235,"journal":{"name":"Biosurface and Biotribology","volume":"11 1","pages":""},"PeriodicalIF":1.6,"publicationDate":"2025-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/bsb2.70007","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144314928","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Functional Hydrogels for the Treatment of Periodontitis 治疗牙周炎的功能性水凝胶
IF 1.6
Biosurface and Biotribology Pub Date : 2025-06-02 DOI: 10.1049/bsb2.70009
Yongjie Luo, Lu Yang, Chubao Liu, Liwei Yan, Chaoming Xie
{"title":"Functional Hydrogels for the Treatment of Periodontitis","authors":"Yongjie Luo,&nbsp;Lu Yang,&nbsp;Chubao Liu,&nbsp;Liwei Yan,&nbsp;Chaoming Xie","doi":"10.1049/bsb2.70009","DOIUrl":"https://doi.org/10.1049/bsb2.70009","url":null,"abstract":"<p>Periodontitis is a common and serious oral health problem. It not only damages the health of periodontal tissues but also has potential impacts on the whole body. Existing treatment methods, such as mechanical debridement and antibiotic treatment, have obvious limitations. Functional hydrogels can be used as drug carriers to deliver medications for treating periodontitis. Meanwhile, depending on different designs, hydrogels can achieve functions such as antioxidant, antibacterial, anti-inflammatory effects and osteoinduction, making them a promising material for periodontitis treatment. In this review, we first elaborate on the preparation methods of hydrogels for periodontitis, as well as the pathological characteristics and hazards of periodontitis. Then, we introduce the applications of hydrogels in antibacterial, anti-inflammatory, antioxidant and osteoinduction aspects related to periodontitis. Finally, we discuss the current challenges and future research directions in this field.</p>","PeriodicalId":52235,"journal":{"name":"Biosurface and Biotribology","volume":"11 1","pages":""},"PeriodicalIF":1.6,"publicationDate":"2025-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/bsb2.70009","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144197361","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Superlubricity of Double-Network Hydrogels Modified With Tween 80 and Hydrogenated Soybean Phosphatidylcholine
IF 1.6
Biosurface and Biotribology Pub Date : 2025-05-13 DOI: 10.1049/bsb2.70008
Haoyu Wang, Jian Song, Yuhong Liu
{"title":"Superlubricity of Double-Network Hydrogels Modified With Tween 80 and Hydrogenated Soybean Phosphatidylcholine","authors":"Haoyu Wang,&nbsp;Jian Song,&nbsp;Yuhong Liu","doi":"10.1049/bsb2.70008","DOIUrl":"https://doi.org/10.1049/bsb2.70008","url":null,"abstract":"<p>Artificial joint cartilage materials are central to arthroplasty for the treatment of osteoarthritis. Hydrogels are highly promising materials for fabricating artificial cartilage owing to their excellent biocompatibility and lubricity. Inspired by natural articular cartilage, in this study, we designed a modification strategy to enhance the lubricity of double-network (DN) hydrogels. Specifically, two lubricating substances, nonionic surfactant Tween 80 and hydrogenated soybean phosphatidylcholine (HSPC), were incorporated into a DN hydrogel. Lubricity-enhanced DN hydrogel exhibited superlubricity through the synergistic effect of Tween 80 and HSPC, with a low coefficient of friction of 0.008, which remained stable after 6 h of continuous tribological testing. In addition, the mechanical properties of lubricity-enhanced DN hydrogel were greater than those of unmodified DN hydrogel, with a 29% increase in fracture strain and a 1.7-fold increase in toughness. Tween 80 micelles reinforced the physically cross-linked network through hydrogen bonding with the DN hydrogel, whereas HSPC vesicles encapsulated in the polymer network served as reinforcement nodes to enhance the chemically cross-linked network. As a result, lubricity-enhanced DN hydrogel exhibited both excellent lubricity and mechanical properties. This study demonstrates an innovative way to design hydrogels exhibiting both superlubricity and excellent mechanical properties, broadening the applications of DN hydrogels in the field of artificial joint cartilage.</p>","PeriodicalId":52235,"journal":{"name":"Biosurface and Biotribology","volume":"11 1","pages":""},"PeriodicalIF":1.6,"publicationDate":"2025-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/bsb2.70008","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143944921","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Thermal Nitridation Deoxygenation and Biotribological Properties of Zr2.5Nb Zr2.5Nb 的热氮化脱氧和生物生物学特性
IF 1.6
Biosurface and Biotribology Pub Date : 2025-04-21 DOI: 10.1049/bsb2.70005
Liuwang Zhang, Jiangchuan Xu, Hao Liu, Yong Luo
{"title":"Thermal Nitridation Deoxygenation and Biotribological Properties of Zr2.5Nb","authors":"Liuwang Zhang,&nbsp;Jiangchuan Xu,&nbsp;Hao Liu,&nbsp;Yong Luo","doi":"10.1049/bsb2.70005","DOIUrl":"https://doi.org/10.1049/bsb2.70005","url":null,"abstract":"<p>Zirconium and its alloys are considered to be materials for artificial joints because of their excellent biocompatibility. In this study, we proposed the introduction of high-purity iron beads as external deoxidisers to inhibit the oxidation of Zr2.5Nb during thermal nitriding and investigated the biotribological properties of this alloy after deoxidation. Zr2.5Nb samples were subjected to deoxidation thermal nitriding at 900°C and 1000°C for 4 h. The main phase on the surface was ZrN, which was accompanied by a minor phase of unsaturated zirconium oxides (ZrO<sub>0.33</sub>, ZrO<sub>0.27</sub>). The thickness of the ZrN ceramic layer increased from 5.26 ± 0.37 μm to 7.78 ± 0.19 μm. During electrochemical friction–corrosion test, the open-circuit potential (OCP) and coefficient of friction (COF) values for the sample prepared at 900°C were −809.8 mV and 0.3015, and those for the sample prepared at 1000°C were −682.3 mV and 0.3168. The samples that underwent deoxidation thermal nitriding exhibited better friction–corrosion resistance and a lower friction coefficient than the original sample. Additionally, the volume wear loss was reduced by 50.53% and 62.27%, also demonstrating the superior biotribological properties achieved through deoxidation thermal nitriding.</p>","PeriodicalId":52235,"journal":{"name":"Biosurface and Biotribology","volume":"11 1","pages":""},"PeriodicalIF":1.6,"publicationDate":"2025-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/bsb2.70005","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143857136","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Recognition of Fine Textures Using Friction and EEG Methods 使用摩擦和脑电图方法识别细微纹理
IF 1.6
Biosurface and Biotribology Pub Date : 2025-04-14 DOI: 10.1049/bsb2.70006
Shousheng Zhang, Wei Tang
{"title":"Recognition of Fine Textures Using Friction and EEG Methods","authors":"Shousheng Zhang,&nbsp;Wei Tang","doi":"10.1049/bsb2.70006","DOIUrl":"https://doi.org/10.1049/bsb2.70006","url":null,"abstract":"<p>Tactile perception is essential for humans to recognise objects. This study systematically investigated the tribological behaviour of the finger and physiological response of the brain related to the width recognition of tactile perception using subjective evaluation, friction and electroencephalography methods. The results show that the texture feeling, recognition accuracy of the texture and proportion of deformation friction increased with the texture width. The average width recognition threshold of the fine texture was 45.4 μm. The load index, maximum amplitude of the vibration signal, entropy, longest vertical line and P300 amplitude were positively correlated with the texture width. P300 latency was negatively correlated with the texture width. When the texture width exceeded the width recognition thresholds of tactile perception, the main frequency of the vibration signals increased to the optimal perceptual range of the Pacinian corpuscle. The nonlinear features of the vibration signal increased, and the vibration system transitioned from a homogenous state to a disrupted state. Moreover, the activation intensity and area of the brain and the speed of tactile recognition increased. The study demonstrated that the mechanical stimuli of friction and vibration generated in the touching of fine textures having various widths affected the subjective evaluation and brain response.</p>","PeriodicalId":52235,"journal":{"name":"Biosurface and Biotribology","volume":"11 1","pages":""},"PeriodicalIF":1.6,"publicationDate":"2025-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/bsb2.70006","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143831360","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Friction and Wear Characteristics of Micro-Arc Oxidation Coating on Ti6Al4V Alloy—A Review Ti6Al4V合金微弧氧化涂层的摩擦磨损特性
IF 1.6
Biosurface and Biotribology Pub Date : 2025-03-28 DOI: 10.1049/bsb2.70000
Zhangyue Qin, Xiaogang Zhang, Yali Zhang, Yong Luo, Zhongmin Jin
{"title":"Friction and Wear Characteristics of Micro-Arc Oxidation Coating on Ti6Al4V Alloy—A Review","authors":"Zhangyue Qin,&nbsp;Xiaogang Zhang,&nbsp;Yali Zhang,&nbsp;Yong Luo,&nbsp;Zhongmin Jin","doi":"10.1049/bsb2.70000","DOIUrl":"https://doi.org/10.1049/bsb2.70000","url":null,"abstract":"<p>Ti6Al4V alloy is widely used in artificial joints, artificial bones, and dental implants due to its elastic modulus similar to that of bone, good biocompatibility and non-cytotoxicity, low density, and excellent fatigue resistance. However, its utility is constrained by the low surface hardness and inadequate wear resistance. Micro-arc oxidation (MAO) technology emerges as a surface modification method characterised by a straightforward process and superior processing efficacy, making it particularly favoured in enhancing the wear resistance of Ti6Al4V. This paper commenced by elucidating the fundamental principles of micro-arc oxidation. Subsequently, it examined the impacts of crucial parameters such as electrolyte type, concentration, processing voltage, current, time, and electrolyte additives on the friction and wear properties of Ti6Al4V alloy MAO coatings, proposing three mechanisms for optimising wear resistance. The primary strategies for augmenting the microhardness and wear resistance of Ti6Al4V alloy MAO coatings involved pore reduction even sealing, lubrication enhancement, and hard compound generation. Following this, the article synthesised the friction and wear attributes of MAO coatings in conjunction with diverse modification techniques, alongside a review of fretting wear characteristics of Ti6Al4V alloy MAO coatings. Lastly, conclusions and prospects were presented to furnish a foundation for future exploration into the wear resistance of Ti6Al4V alloy MAO coatings in scholarly endeavours.</p>","PeriodicalId":52235,"journal":{"name":"Biosurface and Biotribology","volume":"11 1","pages":""},"PeriodicalIF":1.6,"publicationDate":"2025-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/bsb2.70000","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143726789","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Tribological Properties of Ti-Based Nanofiber-CS Composite Flexible Coatings 钛基纳米纤维-CS 复合柔性涂层的摩擦学特性
IF 1.6
Biosurface and Biotribology Pub Date : 2025-03-22 DOI: 10.1049/bsb2.70001
Zhenyu Yang, Weili Jiang, Hui Yan, Jingkang Zhang, Jinbang Li, Yuan Jin, Guangyong Li, Jianke Du, Haitao Fan, Licheng Hua
{"title":"Tribological Properties of Ti-Based Nanofiber-CS Composite Flexible Coatings","authors":"Zhenyu Yang,&nbsp;Weili Jiang,&nbsp;Hui Yan,&nbsp;Jingkang Zhang,&nbsp;Jinbang Li,&nbsp;Yuan Jin,&nbsp;Guangyong Li,&nbsp;Jianke Du,&nbsp;Haitao Fan,&nbsp;Licheng Hua","doi":"10.1049/bsb2.70001","DOIUrl":"https://doi.org/10.1049/bsb2.70001","url":null,"abstract":"<p>The development of metal implants as permanent replacements for hard tissue involves careful consideration of both interfacial bone integration for load-bearing support and interfacial energy dissipation to prevent bone resorption due to excess load. Currently, most implants are typically limited to excelling in only one of these functions. A promising approach to achieving a synergistic effect of interfacial bone integration and energy dissipation is the design of a nanofiber-chitosan (nanofiber-CS) composite flexible coating on titanium alloy surfaces. However, the tribological properties of this flexible coating remain uncertain. In this study, the authors evaluated the tribological properties of pure titanium substrates and the nanofiber-cs composite flexible coating in both dry and wet environments. The results demonstrated that while the nanofiber-cs composite flexible coating reduced surface wear in dry conditions, it increased surface wear in wet environments. This indicates that there is potential for improvement in the tribological characteristics of the nanofiber-cs composite flexible coating, particularly in wet conditions. This research offers theoretical and technical insights into the design of flexible coatings for implant surfaces from a tribological standpoint.</p>","PeriodicalId":52235,"journal":{"name":"Biosurface and Biotribology","volume":"11 1","pages":""},"PeriodicalIF":1.6,"publicationDate":"2025-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/bsb2.70001","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143689387","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Frictional Behaviour and Surface Topography Evolution of DLC-Coated Biomedical Alloys dlc涂层生物医用合金的摩擦行为和表面形貌演变
IF 1.6
Biosurface and Biotribology Pub Date : 2025-03-21 DOI: 10.1049/bsb2.70004
David Nečas, Adam Gelnar, Benedict Rothammer, Max Marian, Matúš Ranuša, Sandro Wartzack, Martin Vrbka, Ivan Křupka, Martin Hartl
{"title":"Frictional Behaviour and Surface Topography Evolution of DLC-Coated Biomedical Alloys","authors":"David Nečas,&nbsp;Adam Gelnar,&nbsp;Benedict Rothammer,&nbsp;Max Marian,&nbsp;Matúš Ranuša,&nbsp;Sandro Wartzack,&nbsp;Martin Vrbka,&nbsp;Ivan Křupka,&nbsp;Martin Hartl","doi":"10.1049/bsb2.70004","DOIUrl":"https://doi.org/10.1049/bsb2.70004","url":null,"abstract":"<p>Advanced engineering coatings offer a promising solution to enhance the longevity and performance of medical biomaterials in orthopaedic implants. This study hypothesises that diamond-like carbon (DLC) coatings exhibit distinct frictional performance based on substrate and counterface material. Three different DLC coatings were tested using a pin-on-plate test in four material combinations. Virgin and DLC-coated CoCrMo and Ti6Al4V pins were tested under sliding against UHMWPE and glass plates with simulated body fluid lubrication. Results revealed that coating composition significantly impacts frictional performance, with silicon- and oxygen-doped coatings showing great potential to minimise friction. Surprisingly, reducing contact pressure had either a neutral or somewhat negative effect. Future investigations will focus on long-term testing and lubrication analyses of these material combinations.</p>","PeriodicalId":52235,"journal":{"name":"Biosurface and Biotribology","volume":"11 1","pages":""},"PeriodicalIF":1.6,"publicationDate":"2025-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/bsb2.70004","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143689241","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Influence of Neutral and Cationic Phytoglycogen Nanoparticles on Cartilage and Ocular Lubrication 中性和阳离子植物糖原纳米颗粒对软骨和眼润滑的影响
IF 1.6
Biosurface and Biotribology Pub Date : 2025-03-07 DOI: 10.1049/bsb2.70002
Nikola R. Mazarevica, Yong Chen, Ke Ren, Hans J. Kaper, Bryn D. Monnery, Prashant K. Sharma
{"title":"Influence of Neutral and Cationic Phytoglycogen Nanoparticles on Cartilage and Ocular Lubrication","authors":"Nikola R. Mazarevica,&nbsp;Yong Chen,&nbsp;Ke Ren,&nbsp;Hans J. Kaper,&nbsp;Bryn D. Monnery,&nbsp;Prashant K. Sharma","doi":"10.1049/bsb2.70002","DOIUrl":"https://doi.org/10.1049/bsb2.70002","url":null,"abstract":"<p>Compromised hydration and biolubrication leads to untreatable disorders like osteoarthritis (OA), dry eye disease (DED) and dry mouth disease (xerostomia). Only symptomatic treatment is possible through bioactive molecules. This study aims to investigate the biolubrication properties of natural and modified phytoglycogen nanoparticles (PGNPs) which have shown superlubricious behaviour at mica-mica sliding interface. PGNPs were cationised (CPGNPs) by modifying hydroxyl groups into quaternary amine groups. Dynamic light scattering (DLS) was used to characterise the size and zeta-potential of both the PGNPs. The quartz crystal microbalance with dissipation (QCM-D) was used to investigate their adhesion to collagen type II and mucin. The tribological properties of the nanoparticles were studied using the polydimethylsiloxane (PDMS)-glass system, cartilage-glass (synovial) and eye-eyelid (ocular) systems. CPGNPs adhered better than PGNPs on synovial and ocular surfaces. Both particle types showed good lubrication for cartilage but no differences between PGNPs and CPGNPs in the eye-eyelid system were observed. Overall, the CPGNPs showed better lubrication properties than PGNPs. PGNPs and CPGNPs were observed to have good lubricating properties in the cartilage-glass system, indicating to great potential towards a possible implementation in the treatment of osteoarthritis.</p>","PeriodicalId":52235,"journal":{"name":"Biosurface and Biotribology","volume":"11 1","pages":""},"PeriodicalIF":1.6,"publicationDate":"2025-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/bsb2.70002","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143571266","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Optimisation of Photo-Curable 3D-Printed Bionic Double Layer Lower Extremity Vascular Models Based on Biomechanical Performance Evaluation 基于生物力学性能评价的光固化3d打印仿生双层下肢血管模型优化
IF 1.6
Biosurface and Biotribology Pub Date : 2025-03-07 DOI: 10.1049/bsb2.70003
Shuai Wang, Zhuo Liu, Limei Tian, Wei Bing
{"title":"Optimisation of Photo-Curable 3D-Printed Bionic Double Layer Lower Extremity Vascular Models Based on Biomechanical Performance Evaluation","authors":"Shuai Wang,&nbsp;Zhuo Liu,&nbsp;Limei Tian,&nbsp;Wei Bing","doi":"10.1049/bsb2.70003","DOIUrl":"https://doi.org/10.1049/bsb2.70003","url":null,"abstract":"<p>Guidewire interventional radiotherapy is an important means for the diagnosis and treatment of cardiovascular disease, and the risk of intraoperative guidewire puncture jeopardises the life and health of patients. A bionic multilayer vascular model that conforms to the real vascular morphology and mechanical properties of arterial vessels can help surgeons familiarise themselves with the mechanical properties of blood vessels in preoperative simulations and thus avoid the risk of intraoperative vascular puncture. In this paper, porcine abdominal aortic vessels were used as a biological model to evaluate its mechanical properties by T-peel test, uniaxial tensile test and puncture force test. The results showed that the average delamination force between the intima and media of the vessels was 1.11 N. The radial tensile strength of the vessels was greater than the axial tensile strength and the elongation at the break of the media increased after peeling the intima. A multilayer vascular model manufacturing method was developed, and the structural integrity was improved using an intima–media nesting method. This research provides guidance for material selection and preparation processes for 3D printed bionic multilayer lower limb vascular models and contributes to the development of more accurate and functional 3D printed vascular models for biomedical applications.</p>","PeriodicalId":52235,"journal":{"name":"Biosurface and Biotribology","volume":"11 1","pages":""},"PeriodicalIF":1.6,"publicationDate":"2025-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/bsb2.70003","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143571265","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信