Biosurface and Biotribology最新文献

筛选
英文 中文
Preparation and biological activity study of Ti13Nb13Zr surface nanotubes Ti13Nb13Zr 表面纳米管的制备和生物活性研究
IF 1.6
Biosurface and Biotribology Pub Date : 2024-12-12 DOI: 10.1049/bsb2.12087
Xingping Fan, Wei Fan
{"title":"Preparation and biological activity study of Ti13Nb13Zr surface nanotubes","authors":"Xingping Fan,&nbsp;Wei Fan","doi":"10.1049/bsb2.12087","DOIUrl":"https://doi.org/10.1049/bsb2.12087","url":null,"abstract":"<p>As a third-generation titanium alloy, Ti13Nb13Zr is widely used in the field of biomedicine due to its advantages such as low elastic modulus, high strength, high toughness, high fatigue strength, corrosion resistance, and good biocompatibility. However, the biological inertness of Ti13Nb13Zr alloy limit their wide application as biomedical implant materials. In this study, the bioactive TiO<sub>2</sub> nanotubes was prepared on Ti13Nb13Zr alloy by anodisation and heat treatment method. The bioactivity of Ti13Nb13Zr was evaluated by immersing the samples into the simulated body fluid for 20 days. Results show that the Ti13Nb13Zr alloy coated with anatase nanotubes has the superior ability of hydroxyapatite formation.</p>","PeriodicalId":52235,"journal":{"name":"Biosurface and Biotribology","volume":"10 4","pages":"159-166"},"PeriodicalIF":1.6,"publicationDate":"2024-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/bsb2.12087","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142860899","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Improvement of a pendulum-type apparatus for friction test of a contact lens to simulate the conditions of its actual usage 改进用于隐形眼镜摩擦测试的摆锤式仪器,模拟实际使用条件
IF 1.6
Biosurface and Biotribology Pub Date : 2024-11-27 DOI: 10.1049/bsb2.12086
Ryusuke Nakaoka, Hiroko Iwashita, Yuichi Hori, Kiyoshi Mabuchi, Toru Matsunaga, Yuji Haishima, Eiichi Yamamoto
{"title":"Improvement of a pendulum-type apparatus for friction test of a contact lens to simulate the conditions of its actual usage","authors":"Ryusuke Nakaoka,&nbsp;Hiroko Iwashita,&nbsp;Yuichi Hori,&nbsp;Kiyoshi Mabuchi,&nbsp;Toru Matsunaga,&nbsp;Yuji Haishima,&nbsp;Eiichi Yamamoto","doi":"10.1049/bsb2.12086","DOIUrl":"https://doi.org/10.1049/bsb2.12086","url":null,"abstract":"<p>Friction between the contact lens (CL) and the corneal or conjunctival surfaces is considered one of key factors in triggering CL-associated adverse effects. However, the relationship between friction properties and these effects remains unclear. Traditional measurement methods often fail to replicate real-life conditions, thereby highlighting the need for more effective apparatus. In this study, the authors developed an optimised pendulum apparatus integrated with an inclinometer to enhance the measurement of CL friction coefficients, thereby improving its precision and relevance to clinical settings. This new design allows for faster and easier calculation of the friction coefficient based on the amplitude decay per libration cycle, surpassing the accuracy of previous video-based methods. The pendulum's hemisphere component was made from ethylene–propylene–diene monomer rubber (EPDM) 30, which has an elastic modulus similar to that of a human eyeball, creating a measurement environment that closely mimics real-world usage. The authors optimised the apparatus by evaluating the effects of hemisphere stiffness and saline volume on the friction coefficient. Measurements of multiple lenses recorded by the authors, particularly Lens A, made of narafilcon A, revealed significant consistency across different hemisphere materials with an optimal saline volume of 150 μL yielding a friction coefficient of 0.026 ± 0.003. No statistically significant differences in the friction coefficients were found across variations in the lens base curve, diameter, centre thickness, or power. This improved apparatus demonstrates the capability of effectively measuring friction coefficients under conditions that simulate clinical usage, providing rapid and reliable results. The findings validate the apparatus and suggest its potential for broader applications in assessing CL properties, thereby facilitating future research on the material characteristics and safety of various CLs, including decorative lenses.</p>","PeriodicalId":52235,"journal":{"name":"Biosurface and Biotribology","volume":"10 4","pages":"167-175"},"PeriodicalIF":1.6,"publicationDate":"2024-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/bsb2.12086","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142862184","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Machine learning-based investigations of the effect of surface texture geometry on the wear behaviour of UHMWPE bearings in hip joint implants
IF 1.6
Biosurface and Biotribology Pub Date : 2024-10-24 DOI: 10.1049/bsb2.12085
Vipin Kumar, Ravi Prakash Tewari, Anubhav Rawat
{"title":"Machine learning-based investigations of the effect of surface texture geometry on the wear behaviour of UHMWPE bearings in hip joint implants","authors":"Vipin Kumar,&nbsp;Ravi Prakash Tewari,&nbsp;Anubhav Rawat","doi":"10.1049/bsb2.12085","DOIUrl":"https://doi.org/10.1049/bsb2.12085","url":null,"abstract":"<p>The purpose of this research is to develop data-driven machine learning (ML) models capable of estimating the specific wear rate of ultra-high molecular weight polyethylene (UHMWPE) used in hip replacement implants. The results of the data-driven models are demonstrating a high level of consistency with the experimental findings acquired from the pin-on-disk (POD) trials. With a performance evaluation of 0.06 mean absolute error (MAE), 0.17 Root Mean Square Error (RMSE), and 0.96 <i>R</i><sup>2</sup>, the Random Forest Regression is found to be the best model. Another machine learning model, called Gradient Boosting Regression, is also found to possess satisfactory predictive performance by having an MAE of 0.09, RMSE of 0.24, and <i>R</i><sup>2</sup> of 0.96. According to the findings of a parametric analysis that made use of an ML model, the surface texture geometry has a substantial dependence on the wear behaviour of UHMWPE bearings that are used in hip replacement implants. This strategy has the potential to enhance experiment design and lessen the necessity for time-consuming POD trials for the purpose of assessing the wear of hip replacement implants.</p>","PeriodicalId":52235,"journal":{"name":"Biosurface and Biotribology","volume":"10 4","pages":"143-158"},"PeriodicalIF":1.6,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/bsb2.12085","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142862105","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Protein hydrogels for biomedical applications 用于生物医学应用的蛋白质水凝胶
IF 1.6
Biosurface and Biotribology Pub Date : 2024-09-09 DOI: 10.1049/bsb2.12084
Xinyi Wang, Yue Hou, Xiong Lu, Chaoming Xie, Yanan Jiang
{"title":"Protein hydrogels for biomedical applications","authors":"Xinyi Wang,&nbsp;Yue Hou,&nbsp;Xiong Lu,&nbsp;Chaoming Xie,&nbsp;Yanan Jiang","doi":"10.1049/bsb2.12084","DOIUrl":"https://doi.org/10.1049/bsb2.12084","url":null,"abstract":"<p>Hydrogels, characterised as highly hydrophilic three-dimensional polymer networks, have gained increasing attention due to their unique physicochemical properties, finding applications in various fields. Natural polymer hydrogels exhibit higher biocompatibility and biodegradability compared to traditional synthetic polymer hydrogels. Proteins, being the principal materials of natural polymer hydrogels, bear numerous modifiable functional groups. The resultant hydrogel possesses responsiveness, adjustable degradability, and underway as an excellent biomaterial. Seven common raw materials used to construct protein hydrogels are introduced. In terms of comparing natural polymer hydrogels with traditional synthetic polymer hydrogels, the authors conduct a detailed analysis and comparison, highlighting the advantages of natural polymer hydrogels in terms of biocompatibility and biodegradability, and summarising their characteristics. The authors also address the limitations of various protein hydrogels and list existing strengthening cross-linking strategies, proposing new insights to overcome the application limits of protein hydrogels. Additionally, the applications of protein hydrogels in drug delivery, biosensing, bio-inks and tissue engineering are discussed. The authors conclude by summarising the current challenges faced by protein hydrogels and prospecting its future development.</p>","PeriodicalId":52235,"journal":{"name":"Biosurface and Biotribology","volume":"10 3","pages":"106-131"},"PeriodicalIF":1.6,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/bsb2.12084","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142320572","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Flow field characteristics and drag reduction performance of high–low velocity stripes on the biomimetic imbricated fish scale surfaces 仿生鱼鳞表面高低速条纹的流场特性和阻力降低性能
IF 1.6
Biosurface and Biotribology Pub Date : 2024-09-06 DOI: 10.1049/bsb2.12083
Dengke Chen, XianXian Cui, Huawei Chen
{"title":"Flow field characteristics and drag reduction performance of high–low velocity stripes on the biomimetic imbricated fish scale surfaces","authors":"Dengke Chen,&nbsp;XianXian Cui,&nbsp;Huawei Chen","doi":"10.1049/bsb2.12083","DOIUrl":"https://doi.org/10.1049/bsb2.12083","url":null,"abstract":"<p>Improving energy efficiency and cost reduction is a perennial challenge in engineering. Natural biological systems have evolved unique functional surfaces or special physiological functions over centuries to adapt to their complex environments. Among these biological wonders, fish, one of the oldest vertebrate groups, has garnered significant attention due to its exceptional fluid dynamics capabilities. Researchers are actively exploring the potential of fish skin's distinctive structural and material characteristics in reducing resistance. In this study, models of biomimetic imbricated fish scale are established, and the evolution characteristics of the flow field and drag reduction performance on these bionic surfaces are investigated. The results showed a close relationship between the high–low velocity stripes generated and the fluid motion by the imbricated fish scale surface. The stripes' prominence increases with the spacing of the adjacent scales and tilt angle of the fish scale, and the velocity amplitude of the stripes decreases as the exposed length of the imbricated fish scale surface increases. Moreover, the biomimetic imbricated fish scale surface can decrease the velocity gradient and thereby reduce the wall shear stress. The insights gained from the fish skin-inspired imbricated fish surface provide valuable perspectives for an in-depth analysis of fish hydrodynamics and offer fresh inspiration for drag reduction and antifouling strategies in engineering applications.</p>","PeriodicalId":52235,"journal":{"name":"Biosurface and Biotribology","volume":"10 3","pages":"132-141"},"PeriodicalIF":1.6,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/bsb2.12083","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142320715","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Advancements and challenges in bionic joint lubrication biomaterials for sports medicine 运动医学仿生关节润滑生物材料的进步与挑战
IF 1.6
Biosurface and Biotribology Pub Date : 2024-08-30 DOI: 10.1049/bsb2.12082
Lei Xiang, Zhen Wang, Wenguo Cui
{"title":"Advancements and challenges in bionic joint lubrication biomaterials for sports medicine","authors":"Lei Xiang,&nbsp;Zhen Wang,&nbsp;Wenguo Cui","doi":"10.1049/bsb2.12082","DOIUrl":"https://doi.org/10.1049/bsb2.12082","url":null,"abstract":"<p>Bionic lubricant materials are a class of materials inspired by natural organisms and offer excellent lubrication properties and biocompatibility. In the field of sports medicine, their application opens up new possibilities for the prevention and treatment of sports-related diseases. The authors will introduce the existing theoretical models of friction in the locomotor system, the characteristics and advantages of biomimetic lubrication materials and discuss in depth their applications in the field of sports medicine. The development of bionic lubrication materials opens up unprecedented opportunities for sports medicine to provide more effective and long-lasting treatment options for patients.</p>","PeriodicalId":52235,"journal":{"name":"Biosurface and Biotribology","volume":"10 3","pages":"89-105"},"PeriodicalIF":1.6,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/bsb2.12082","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142320901","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Biofunctionalisation strategies of material surface and the inspired biological effects for bone repair 材料表面的生物功能化策略及其对骨修复的生物效应启发
Biosurface and Biotribology Pub Date : 2024-06-03 DOI: 10.1049/bsb2.12081
Guowen Duan, Dongbiao Chang, Chengdong Zhang, Siyu Li, Xinyao Liu, Zian Wang, Long Chen, Jinsheng Li, Zhenfan Bai, Jie Weng
{"title":"Biofunctionalisation strategies of material surface and the inspired biological effects for bone repair","authors":"Guowen Duan,&nbsp;Dongbiao Chang,&nbsp;Chengdong Zhang,&nbsp;Siyu Li,&nbsp;Xinyao Liu,&nbsp;Zian Wang,&nbsp;Long Chen,&nbsp;Jinsheng Li,&nbsp;Zhenfan Bai,&nbsp;Jie Weng","doi":"10.1049/bsb2.12081","DOIUrl":"10.1049/bsb2.12081","url":null,"abstract":"<p>Due to trauma and disease, bone defects endanger the healthy life of human beings. At present, the gold standard for bone defect repair is still autologous bone transplantation and allogeneic bone transplantation. However, its insufficient source, potential disease transmission and immune rejection limit its clinical application. Therefore, the development of bone repair materials plays an important role in promoting bone repair. As the interface between material and tissue, the surface of the material plays an important role in the reaction after implantation, which determines the effectiveness of defect repair treatment. With the development of surface engineering and technology, bone repair materials have developed from biological inertia to biological activity by endowing various biological functions by controlling the composition, topological morphology and structure of the material surface etc. The inspired biofunctionalisation of material surface includes the capacities of inducing osteogenesis, promoting angiogenesis, antibacterial, immune regulation etc., as well as integration of postoperative repair and treatment. The authors review the biofunctionalisation of biomaterial surface and the inspired biological effects for bone repair, mainly including physical and chemical properties of material surface to regulate osteogenesis, and functional strategy of bone repair material surface.</p>","PeriodicalId":52235,"journal":{"name":"Biosurface and Biotribology","volume":"10 2","pages":"17-41"},"PeriodicalIF":0.0,"publicationDate":"2024-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/bsb2.12081","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141271309","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Enhancing the biological functionality of poly (lactic-co-glycolic acid) cage-like structures through surface modification with micro- and nano-sized hydroxyapatite particles 用微型和纳米级羟基磷灰石颗粒进行表面改性,增强聚(乳酸-共聚-乙醇酸)笼状结构的生物功能
Biosurface and Biotribology Pub Date : 2024-05-23 DOI: 10.1049/bsb2.12080
Dongbiao Chang, Siyu Li, Zhenfan Bai, Jing You, Lili Cao, Qingcao Li, Huan Tan, Yan Zheng, Feilun Ye, Jie Weng
{"title":"Enhancing the biological functionality of poly (lactic-co-glycolic acid) cage-like structures through surface modification with micro- and nano-sized hydroxyapatite particles","authors":"Dongbiao Chang,&nbsp;Siyu Li,&nbsp;Zhenfan Bai,&nbsp;Jing You,&nbsp;Lili Cao,&nbsp;Qingcao Li,&nbsp;Huan Tan,&nbsp;Yan Zheng,&nbsp;Feilun Ye,&nbsp;Jie Weng","doi":"10.1049/bsb2.12080","DOIUrl":"10.1049/bsb2.12080","url":null,"abstract":"<p>Biomaterials with exceptional performance are crucial for addressing the challenges of complex bone regeneration. Compared with traditional three-dimensional scaffolds, injectable microspheres enable new strategies for the treatment of irregular bone defects. Biodegradable poly (lactic-co-glycolic acid) has found widespread applications as microcarriers of drugs, proteins, and other active macromolecules. Applied to the surface of poly (lactic-co-glycolic acid) cage-like structures (PLGA-CAS), hydroxyapatite (HA) effectively reduces inflammation while enhancing biological effects. In this study, we loaded the surface of PLGA-CAS with micro- and nano-hydroxyapatite particles, referred to as μHA/PLGA-CAS and nHA/PLGA-CAS, respectively. Subsequently, their material characteristics and biological effects were assessed. The incorporation of hydroxyapatite onto PLGA-CAS resulted in enhanced surface roughness and hydrophilicity, coupled with improved thermal stability and delayed degradation. Furthermore, μHA/PLGA-CAS induced osteogenic differentiation of osteoblast precursor cells, while nHA/PLGA-CAS improved endothelial cell adhesion and stimulated angiogenic differentiation in vitro. Collectively, these findings suggest that μHA/PLGA-CAS and nHA/PLGA-CAS, each with distinct characteristics, hold significant potential for application as microcarriers in various biomedical contexts.</p>","PeriodicalId":52235,"journal":{"name":"Biosurface and Biotribology","volume":"10 2","pages":"63-75"},"PeriodicalIF":0.0,"publicationDate":"2024-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/bsb2.12080","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141103532","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Microstructure development of Ti scaffold by laser powder bed fusion with chemical polishing and its mechanical properties, biocompatibility 通过激光粉末床熔融与化学抛光技术开发钛支架的微结构及其机械性能和生物相容性
Biosurface and Biotribology Pub Date : 2024-05-16 DOI: 10.1049/bsb2.12079
Changfu Lu, Jing Chen, Teng Ma, Yuxin Chen, Da Zeng, Yiliang Gan, Youwen Yang
{"title":"Microstructure development of Ti scaffold by laser powder bed fusion with chemical polishing and its mechanical properties, biocompatibility","authors":"Changfu Lu,&nbsp;Jing Chen,&nbsp;Teng Ma,&nbsp;Yuxin Chen,&nbsp;Da Zeng,&nbsp;Yiliang Gan,&nbsp;Youwen Yang","doi":"10.1049/bsb2.12079","DOIUrl":"10.1049/bsb2.12079","url":null,"abstract":"<p>Titanium (Ti) dental scaffolds are widely used in dental prosthetics due to their excellent mechanical properties and biocompatibility. However, conventional Ti scaffolds manufactured through machining often do not fit perfectly with the bone defect site. Laser powder bed fusion (LPBF) technology enables the personalised manufacturing of custom-made Ti scaffolds. A custom-made Ti scaffold was prepared using LPBF and its surface roughness was improved through chemical polishing. To enhance the surface roughness, a nitric acid mixed solution with a specific composition of HF: HNO<sub>3</sub>:C<sub>3</sub>H<sub>6</sub>O<sub>3</sub> = 2:2:3 was used. The polishing mechanism was investigated by adjusting the F/Ti ratio to control the formation and dissolution of the oxide film. As a result, the surface of the Ti scaffold after polishing exhibited a smooth and flat appearance compared to the LPBF part, with a reduced surface roughness (Ra) of 1.23 ± 0.19 μm. The custom-made Ti scaffold also demonstrated favourable mechanical properties, with a bending strength of 335.18 ± 33.62 MPa and stiffness of 2.13 ± 0.21 GPa. Furthermore, in vitro cell tests confirmed the excellent biocompatibility of the custom-made Ti scaffold. The authors present a feasible strategy for the further clinical application of custom-made Ti scaffolds, offering enhanced surface properties and addressing the limitations of conventional machining methods.</p>","PeriodicalId":52235,"journal":{"name":"Biosurface and Biotribology","volume":"10 2","pages":"52-62"},"PeriodicalIF":0.0,"publicationDate":"2024-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/bsb2.12079","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140969745","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Photosynthetic co-culture system of algae and human umbilical vein endothelial cells: The effect on alleviating hypoxia and hypoxia/reoxygenation injury 藻类与人脐静脉内皮细胞的光合共培养系统:缓解缺氧和缺氧/复氧损伤的效果
Biosurface and Biotribology Pub Date : 2024-03-29 DOI: 10.1049/bsb2.12078
Donghu Lin, Yuanyuan Chen, Xinyu Tao, Xin Che, Shiyu Li, Shiyu Cheng, Shuxin Qu
{"title":"Photosynthetic co-culture system of algae and human umbilical vein endothelial cells: The effect on alleviating hypoxia and hypoxia/reoxygenation injury","authors":"Donghu Lin,&nbsp;Yuanyuan Chen,&nbsp;Xinyu Tao,&nbsp;Xin Che,&nbsp;Shiyu Li,&nbsp;Shiyu Cheng,&nbsp;Shuxin Qu","doi":"10.1049/bsb2.12078","DOIUrl":"10.1049/bsb2.12078","url":null,"abstract":"<p>It is a developed photosynthetic co-culture system to alleviate the hypoxia and hypoxia/reoxygenation (H/R)-injured human umbilical vein endothelial cells (HUVECs). The algae, <i>Chlorella vulgaris</i>, were encapsulated to slow their growth while not affecting the photosynthetic oxygen-producing capacity by Layer-by-layer (LbL) using gelatin and sodium alginate as the positive and negative charges materials, respectively. Then, the photosynthetic co-culture system of HUVECs and self-oxygenating alginate hydrogel (Algae-gel) was constructed in which the optimal ratios between algae and HUVECs were 5:1 and 20:1 for a 2D or 3D co-cultured manner, respectively. It indicated that the 3D co-cultured manner of HUVECs needed more O<sub>2</sub> by the production of algae than it did in a 2D co-cultured manner. The co-cultured Algae-gel could alleviate hypoxia and the oxidative stress injury of hypoxia and hypoxia/reoxygenation (H/R)-treated HUVECs in the proliferation, intracellular ROS and cellular migratory ability. In addition, the Algae-gel could downregulate the expression of hypoxia-inducible factors 1α (HIF-1α) and vascular endothelial growth factor (VEGF) of hypoxia and H/R-injured HUVECs due to the improvement of hypoxia and H/R injury. This photosynthetic co-culture system could offer a promising approach for repairing hypoxia and H/R-injured cells or tissue by providing safe and stable O<sub>2</sub>.</p>","PeriodicalId":52235,"journal":{"name":"Biosurface and Biotribology","volume":"10 2","pages":"76-88"},"PeriodicalIF":0.0,"publicationDate":"2024-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/bsb2.12078","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140365493","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信