Nikola R. Mazarevica, Yong Chen, Ke Ren, Hans J. Kaper, Bryn D. Monnery, Prashant K. Sharma
{"title":"Influence of Neutral and Cationic Phytoglycogen Nanoparticles on Cartilage and Ocular Lubrication","authors":"Nikola R. Mazarevica, Yong Chen, Ke Ren, Hans J. Kaper, Bryn D. Monnery, Prashant K. Sharma","doi":"10.1049/bsb2.70002","DOIUrl":null,"url":null,"abstract":"<p>Compromised hydration and biolubrication leads to untreatable disorders like osteoarthritis (OA), dry eye disease (DED) and dry mouth disease (xerostomia). Only symptomatic treatment is possible through bioactive molecules. This study aims to investigate the biolubrication properties of natural and modified phytoglycogen nanoparticles (PGNPs) which have shown superlubricious behaviour at mica-mica sliding interface. PGNPs were cationised (CPGNPs) by modifying hydroxyl groups into quaternary amine groups. Dynamic light scattering (DLS) was used to characterise the size and zeta-potential of both the PGNPs. The quartz crystal microbalance with dissipation (QCM-D) was used to investigate their adhesion to collagen type II and mucin. The tribological properties of the nanoparticles were studied using the polydimethylsiloxane (PDMS)-glass system, cartilage-glass (synovial) and eye-eyelid (ocular) systems. CPGNPs adhered better than PGNPs on synovial and ocular surfaces. Both particle types showed good lubrication for cartilage but no differences between PGNPs and CPGNPs in the eye-eyelid system were observed. Overall, the CPGNPs showed better lubrication properties than PGNPs. PGNPs and CPGNPs were observed to have good lubricating properties in the cartilage-glass system, indicating to great potential towards a possible implementation in the treatment of osteoarthritis.</p>","PeriodicalId":52235,"journal":{"name":"Biosurface and Biotribology","volume":"11 1","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2025-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/bsb2.70002","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biosurface and Biotribology","FirstCategoryId":"1087","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/bsb2.70002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Compromised hydration and biolubrication leads to untreatable disorders like osteoarthritis (OA), dry eye disease (DED) and dry mouth disease (xerostomia). Only symptomatic treatment is possible through bioactive molecules. This study aims to investigate the biolubrication properties of natural and modified phytoglycogen nanoparticles (PGNPs) which have shown superlubricious behaviour at mica-mica sliding interface. PGNPs were cationised (CPGNPs) by modifying hydroxyl groups into quaternary amine groups. Dynamic light scattering (DLS) was used to characterise the size and zeta-potential of both the PGNPs. The quartz crystal microbalance with dissipation (QCM-D) was used to investigate their adhesion to collagen type II and mucin. The tribological properties of the nanoparticles were studied using the polydimethylsiloxane (PDMS)-glass system, cartilage-glass (synovial) and eye-eyelid (ocular) systems. CPGNPs adhered better than PGNPs on synovial and ocular surfaces. Both particle types showed good lubrication for cartilage but no differences between PGNPs and CPGNPs in the eye-eyelid system were observed. Overall, the CPGNPs showed better lubrication properties than PGNPs. PGNPs and CPGNPs were observed to have good lubricating properties in the cartilage-glass system, indicating to great potential towards a possible implementation in the treatment of osteoarthritis.