Frictional Behaviour and Surface Topography Evolution of DLC-Coated Biomedical Alloys

IF 1.6 Q4 ENGINEERING, BIOMEDICAL
David Nečas, Adam Gelnar, Benedict Rothammer, Max Marian, Matúš Ranuša, Sandro Wartzack, Martin Vrbka, Ivan Křupka, Martin Hartl
{"title":"Frictional Behaviour and Surface Topography Evolution of DLC-Coated Biomedical Alloys","authors":"David Nečas,&nbsp;Adam Gelnar,&nbsp;Benedict Rothammer,&nbsp;Max Marian,&nbsp;Matúš Ranuša,&nbsp;Sandro Wartzack,&nbsp;Martin Vrbka,&nbsp;Ivan Křupka,&nbsp;Martin Hartl","doi":"10.1049/bsb2.70004","DOIUrl":null,"url":null,"abstract":"<p>Advanced engineering coatings offer a promising solution to enhance the longevity and performance of medical biomaterials in orthopaedic implants. This study hypothesises that diamond-like carbon (DLC) coatings exhibit distinct frictional performance based on substrate and counterface material. Three different DLC coatings were tested using a pin-on-plate test in four material combinations. Virgin and DLC-coated CoCrMo and Ti6Al4V pins were tested under sliding against UHMWPE and glass plates with simulated body fluid lubrication. Results revealed that coating composition significantly impacts frictional performance, with silicon- and oxygen-doped coatings showing great potential to minimise friction. Surprisingly, reducing contact pressure had either a neutral or somewhat negative effect. Future investigations will focus on long-term testing and lubrication analyses of these material combinations.</p>","PeriodicalId":52235,"journal":{"name":"Biosurface and Biotribology","volume":"11 1","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2025-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/bsb2.70004","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biosurface and Biotribology","FirstCategoryId":"1087","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/bsb2.70004","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Advanced engineering coatings offer a promising solution to enhance the longevity and performance of medical biomaterials in orthopaedic implants. This study hypothesises that diamond-like carbon (DLC) coatings exhibit distinct frictional performance based on substrate and counterface material. Three different DLC coatings were tested using a pin-on-plate test in four material combinations. Virgin and DLC-coated CoCrMo and Ti6Al4V pins were tested under sliding against UHMWPE and glass plates with simulated body fluid lubrication. Results revealed that coating composition significantly impacts frictional performance, with silicon- and oxygen-doped coatings showing great potential to minimise friction. Surprisingly, reducing contact pressure had either a neutral or somewhat negative effect. Future investigations will focus on long-term testing and lubrication analyses of these material combinations.

Abstract Image

dlc涂层生物医用合金的摩擦行为和表面形貌演变
先进的工程涂层为提高医用生物材料在骨科植入物中的使用寿命和性能提供了一个很有前途的解决方案。本研究假设类金刚石(DLC)涂层在基材和面材的基础上表现出不同的摩擦性能。三种不同的DLC涂层使用四种材料组合的针对板测试进行了测试。在模拟体液润滑的情况下,Virgin和dlc涂层的CoCrMo和Ti6Al4V引脚在UHMWPE和玻璃板上滑动测试。结果表明,涂层成分显著影响摩擦性能,硅和氧掺杂涂层显示出极大的潜力,以尽量减少摩擦。令人惊讶的是,减少接触压力的效果要么是中性的,要么是有些负面的。未来的研究将集中在这些材料组合的长期测试和润滑分析上。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Biosurface and Biotribology
Biosurface and Biotribology Engineering-Mechanical Engineering
CiteScore
1.70
自引率
0.00%
发文量
27
审稿时长
11 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信