David Nečas, Adam Gelnar, Benedict Rothammer, Max Marian, Matúš Ranuša, Sandro Wartzack, Martin Vrbka, Ivan Křupka, Martin Hartl
{"title":"Frictional Behaviour and Surface Topography Evolution of DLC-Coated Biomedical Alloys","authors":"David Nečas, Adam Gelnar, Benedict Rothammer, Max Marian, Matúš Ranuša, Sandro Wartzack, Martin Vrbka, Ivan Křupka, Martin Hartl","doi":"10.1049/bsb2.70004","DOIUrl":null,"url":null,"abstract":"<p>Advanced engineering coatings offer a promising solution to enhance the longevity and performance of medical biomaterials in orthopaedic implants. This study hypothesises that diamond-like carbon (DLC) coatings exhibit distinct frictional performance based on substrate and counterface material. Three different DLC coatings were tested using a pin-on-plate test in four material combinations. Virgin and DLC-coated CoCrMo and Ti6Al4V pins were tested under sliding against UHMWPE and glass plates with simulated body fluid lubrication. Results revealed that coating composition significantly impacts frictional performance, with silicon- and oxygen-doped coatings showing great potential to minimise friction. Surprisingly, reducing contact pressure had either a neutral or somewhat negative effect. Future investigations will focus on long-term testing and lubrication analyses of these material combinations.</p>","PeriodicalId":52235,"journal":{"name":"Biosurface and Biotribology","volume":"11 1","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2025-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/bsb2.70004","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biosurface and Biotribology","FirstCategoryId":"1087","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/bsb2.70004","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Advanced engineering coatings offer a promising solution to enhance the longevity and performance of medical biomaterials in orthopaedic implants. This study hypothesises that diamond-like carbon (DLC) coatings exhibit distinct frictional performance based on substrate and counterface material. Three different DLC coatings were tested using a pin-on-plate test in four material combinations. Virgin and DLC-coated CoCrMo and Ti6Al4V pins were tested under sliding against UHMWPE and glass plates with simulated body fluid lubrication. Results revealed that coating composition significantly impacts frictional performance, with silicon- and oxygen-doped coatings showing great potential to minimise friction. Surprisingly, reducing contact pressure had either a neutral or somewhat negative effect. Future investigations will focus on long-term testing and lubrication analyses of these material combinations.