Biosurface and Biotribology最新文献

筛选
英文 中文
Effects of sebum properties on skin friction: investigation using a bench test 皮脂特性对皮肤摩擦的影响:使用台架试验的研究
Biosurface and Biotribology Pub Date : 2020-06-16 DOI: 10.1049/bsbt.2019.0015
Kerlen T. Korbeld, Michel Klaassen, Rikeen D. Jobanputra, Erik G. de Vries, Marc A. Masen
{"title":"Effects of sebum properties on skin friction: investigation using a bench test","authors":"Kerlen T. Korbeld,&nbsp;Michel Klaassen,&nbsp;Rikeen D. Jobanputra,&nbsp;Erik G. de Vries,&nbsp;Marc A. Masen","doi":"10.1049/bsbt.2019.0015","DOIUrl":"10.1049/bsbt.2019.0015","url":null,"abstract":"<div>\u0000 <p>The hydro lipid film is an emulsion of sweat and sebum that covers the surface of the human skin and affects the tribological properties of the human skin. This study investigates the effects of the composition of the sebum on the average coefficient of friction. A range of simplified sebums was developed and the friction behaviour was investigated. Five realistic sebums showed a strong variation in friction results, indicating that interpersonal differences in frictional behaviour might have their origin in differences in sebum composition. A more detailed investigation employing controlled variations of individual ingredients showed that friction is highly sensitive to the amount of squalene in the sebum. The amount of fatty acids in the sebum also showed some effects, whilst the amount of cholesterol does not appear to be relevant for the friction behaviour. The main new outcome from this study is that the composition of sebum has a significant effect on the friction response of skin in ways that are currently not yet fully understood.</p>\u0000 </div>","PeriodicalId":52235,"journal":{"name":"Biosurface and Biotribology","volume":"6 2","pages":"43-47"},"PeriodicalIF":0.0,"publicationDate":"2020-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ietresearch.onlinelibrary.wiley.com/doi/epdf/10.1049/bsbt.2019.0015","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48628636","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Design method for a bionic wrist based on tensegrity structures 基于张拉整体结构的仿生手腕设计方法
Biosurface and Biotribology Pub Date : 2020-04-19 DOI: 10.1049/bsbt.2019.0022
Jianwei Sun, Xuemin Cao, Guangsheng Song
{"title":"Design method for a bionic wrist based on tensegrity structures","authors":"Jianwei Sun,&nbsp;Xuemin Cao,&nbsp;Guangsheng Song","doi":"10.1049/bsbt.2019.0022","DOIUrl":"10.1049/bsbt.2019.0022","url":null,"abstract":"<div>\u0000 <p>The traditional bionic upper limb structure design is limited by the motion pair and cannot guarantee the flexibility of the mechanical structure. The tensegrity structure has the characteristics of high deformability, strong self-adaptability, and resistance to multi-directional impact. According to the biological characteristics of the upper limbs of the human body, an anatomical study is performed on the upper limb wrist joints that achieve adduction/abduction, flexion/extension, to obtain the relationship between the movements of the related bones and muscles, and to simplify the shape and structure of the wrist. Equivalent mapping of a mechanical model based on two-bar tensile properties. Through the contraction and stretching of the spring, the movement characteristics of the human muscles are realised, and the optimised bionic upper limb wrist tensioning robot without motion pair is further obtained. Adams simulation is used to verify that the bionic tensile wrist can simulate the change movement of the human wrist. The experimental platform was built and a physical prototype was made and the prototype was tested. The results show that the bionic tensile wrist can realise the adaptive motion characteristics of the human wrist well and stably, which proves the validity and feasibility of this design method.</p>\u0000 </div>","PeriodicalId":52235,"journal":{"name":"Biosurface and Biotribology","volume":"6 2","pages":"31-36"},"PeriodicalIF":0.0,"publicationDate":"2020-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ietresearch.onlinelibrary.wiley.com/doi/epdf/10.1049/bsbt.2019.0022","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49275561","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 7
CMM-based method for assessing the volume change of retrieved polyethylene cups in MoP total hip replacements 基于cmm的人工全髋关节置换术中回收聚乙烯杯体积变化评估方法
Biosurface and Biotribology Pub Date : 2020-04-19 DOI: 10.1049/bsbt.2019.0011
Xijin Hua, Junyan Li
{"title":"CMM-based method for assessing the volume change of retrieved polyethylene cups in MoP total hip replacements","authors":"Xijin Hua,&nbsp;Junyan Li","doi":"10.1049/bsbt.2019.0011","DOIUrl":"10.1049/bsbt.2019.0011","url":null,"abstract":"<div>\u0000 <p>Wear occurring at the bearing surface and the consequent generation of wear debris has been identified as the primary cause of aseptic loosening in metal-on-polyethylene (MoP) hip joint replacements. The accurate estimation of volume change in polyethylene cups due to creep and wear is, therefore, an important step for identifying the cause of failure and improving the longevity of MoP prosthesis. The purposes of this study were to present and apply a co-ordinate measuring machine (CMM)-based method for assessing the volume change of retrieved components due to wear and creep by using a combination of CMM data and a bespoke computer programme. The method was firstly validated against the standard gravimetric technique, and then applied to four retrieved polyethylene cups for wear assessment and analysis. The results show that the volume changes calculated using the present method match well with those assessed through the gravimetric technique. The CMM-based method presented in the study is capable of effectively and reliably determining the volume change and characterising the wear patch of retrieved components from MoP hip joint replacements.</p>\u0000 </div>","PeriodicalId":52235,"journal":{"name":"Biosurface and Biotribology","volume":"6 2","pages":"37-42"},"PeriodicalIF":0.0,"publicationDate":"2020-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ietresearch.onlinelibrary.wiley.com/doi/epdf/10.1049/bsbt.2019.0011","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44168103","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Finite‐element modelling of frictional behaviour between oesophagus and endoscope 食道和内窥镜之间摩擦行为的有限元建模
Biosurface and Biotribology Pub Date : 2020-03-13 DOI: 10.1049/bsbt.2019.0034
Chengxiong Lin, Pan Ren, Wei Li, Hengyi Deng, Zhongrong Zhou
{"title":"Finite‐element modelling of frictional behaviour between oesophagus and endoscope","authors":"Chengxiong Lin, Pan Ren, Wei Li, Hengyi Deng, Zhongrong Zhou","doi":"10.1049/bsbt.2019.0034","DOIUrl":"https://doi.org/10.1049/bsbt.2019.0034","url":null,"abstract":"","PeriodicalId":52235,"journal":{"name":"Biosurface and Biotribology","volume":"6 1","pages":"75-81"},"PeriodicalIF":0.0,"publicationDate":"2020-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42926570","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
In Memoriam: Duncan Dowson (1928–2020) 纪念:邓肯·道森(1928-2020)
Biosurface and Biotribology Pub Date : 2020-03-12 DOI: 10.1049/bsbt.2020.0006
Zhongmin Jin, Zhongrong Zhou
{"title":"In Memoriam: Duncan Dowson (1928–2020)","authors":"Zhongmin Jin,&nbsp;Zhongrong Zhou","doi":"10.1049/bsbt.2020.0006","DOIUrl":"https://doi.org/10.1049/bsbt.2020.0006","url":null,"abstract":"&lt;p&gt;It is with great regret that we have to inform the readers of our Journal that Professor Duncan Dowson, the Honorary Editor of our Journal, has passed away at age 91 (6 January 2020). He had not been feeling well in the last few years and his condition was worsened after a fall. He died in hospital on 6th January 2020. This is a great loss to all of us, particularly in the biotribology community and we will remember him as one of the greatest biotribologists of our time.&lt;/p&gt;&lt;p&gt;Professor Duncan Dowson was born on 31st August 1928 in Yorkshire, UK. He studied an undergraduate degree in Mechanical Engineering at the University of Leeds from 1947 to 1950. He continued his postgraduate study at the same institution and obtained a PhD for his thesis on ‘Cavitation in Lubricating Films Supporting Small Loads’ in 1952. He became a Lecturer in Mechanical Engineering in 1954, a Senior Lecturer in 1963, a Reader in 1965 and a Professor of Engineering Fluid Mechanics and Tribology in 1966: the world's first holder of a Chair of Tribology. He remained active in research as an Emeritus Professor at the University of Leeds after his retirement on 30th September 1993.&lt;/p&gt;&lt;p&gt;Professor Dowson has made a remarkably distinguished contribution to the scientific study and engineering application in the area of Tribology. One of his particular contributions in this field is in Biotribology, a subject that he introduced in 1970 to cover aspects of tribology concerned with biological systems [&lt;span&gt;[1]&lt;/span&gt;]. He was particularly supportive of the research developments in this field. He kindly wrote the Foreword for the ‘Dental Biotribology’ authored by the Editor in 2013 [&lt;span&gt;[2]&lt;/span&gt;].&lt;/p&gt;&lt;p&gt;According to our own accounts, of a total of 616 of his scientific publications, approximately half (301) were dedicated to the area of Biotribology. He published his first paper in Biotribology [&lt;span&gt;[4]&lt;/span&gt;] and organised the first Symposium (Institution of Mechanical Engineers, UK) [&lt;span&gt;[5]&lt;/span&gt;] on the topic of human synovial joints and artificial replacements in 1966, a study that has inspired so many researchers (including two Associated Editors of our Journal) and remained actively investigated till the present time. From the very beginning, he recognised the importance of clinical and medical inputs into this area and had established close collaborations with clinicians including the late Professor Verna Wright, the late Sir John Charnley, Professor Mike Wroblewski etc. Together with many of his postgraduate students and colleagues, he investigated a number of interesting clinical problems, such as joint stiffness, walking activities, and also a cracking joint that has received significant attention recently [&lt;span&gt;[6]&lt;/span&gt;]. His publications on both biomechanics and biotribology of synovial joints and replacements included the hip, the knee, the elbow, the shoulder, the ankle and the finger as well as other interesting topics such as heart values, the fat","PeriodicalId":52235,"journal":{"name":"Biosurface and Biotribology","volume":"6 1","pages":"1-2"},"PeriodicalIF":0.0,"publicationDate":"2020-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ietresearch.onlinelibrary.wiley.com/doi/epdf/10.1049/bsbt.2020.0006","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"91829354","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Systematic review of computational modelling for biomechanics analysis of total knee replacement 全膝关节置换术生物力学分析计算模型的系统综述
Biosurface and Biotribology Pub Date : 2020-02-27 DOI: 10.1049/bsbt.2019.0012
Liming Shu, Shihao Li, Naohiko Sugita
{"title":"Systematic review of computational modelling for biomechanics analysis of total knee replacement","authors":"Liming Shu,&nbsp;Shihao Li,&nbsp;Naohiko Sugita","doi":"10.1049/bsbt.2019.0012","DOIUrl":"10.1049/bsbt.2019.0012","url":null,"abstract":"<div>\u0000 <p>In vitro and in vivo testing can provide insight into knee joint mechanics and implant performance. However, these methods are costly and time-consuming, which always limits their widespread use during the design stage of the implant. This review presents a critical analysis of computational modelling (in-silicon) techniques including (i) development of a generic model of total knee replacement (TKR) and application of material properties, loading, and boundary conditions; (ii) design and execution of computational experiments; and (iii) practical applications and significant findings. The results show that the generic model and techniques provide significant insight into the general performance of TKR but have limited explicit validation. The introduction of design-of-experiments, probabilistic, and neural network methodologies in computational modelling has enabled simulation at the population level. Further advances in subjective modelling appear to be limited, mainly because of the lack of subjective materials and boundary conditions. Computational modelling will increasingly be used in the preclinical testing and design of TKR. This modelling should include subjective, multi-scale, and closely corroborated analyses to account for the variability of TKR.</p>\u0000 </div>","PeriodicalId":52235,"journal":{"name":"Biosurface and Biotribology","volume":"6 1","pages":"3-11"},"PeriodicalIF":0.0,"publicationDate":"2020-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1049/bsbt.2019.0012","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42105357","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 10
Enhanced flow sensing with interfacial microstructures 界面微结构增强流动传感
Biosurface and Biotribology Pub Date : 2020-02-25 DOI: 10.1049/bsbt.2019.0043
Yonggang Jiang, Peng Zhao, Zhiqiang Ma, Dawei Shen, Gongchao Liu, Deyuan Zhang
{"title":"Enhanced flow sensing with interfacial microstructures","authors":"Yonggang Jiang,&nbsp;Peng Zhao,&nbsp;Zhiqiang Ma,&nbsp;Dawei Shen,&nbsp;Gongchao Liu,&nbsp;Deyuan Zhang","doi":"10.1049/bsbt.2019.0043","DOIUrl":"10.1049/bsbt.2019.0043","url":null,"abstract":"<div>\u0000 <p>Biological flow receptors show astonishing performance and are used as models for the design of novel flow sensors. However, the functional importance of interfacial microstructures is seldom discussed in previous review papers. Herein, this review summarises the underlying biomechanical principles in the biological flow receptors and describes the recent progress in bio-inspired flow sensors, in which the underlying sensing-enhancement mechanisms are emphasised.</p>\u0000 </div>","PeriodicalId":52235,"journal":{"name":"Biosurface and Biotribology","volume":"6 1","pages":"12-19"},"PeriodicalIF":0.0,"publicationDate":"2020-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1049/bsbt.2019.0043","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48948263","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 11
In vitro corrosion behaviour of phenolic coated nickel–titanium surfaces 酚醛涂层镍钛表面的体外腐蚀行为
Biosurface and Biotribology Pub Date : 2020-02-10 DOI: 10.1049/bsbt.2018.0018
Simon Longela, Athanasios Chatzitakis
{"title":"In vitro corrosion behaviour of phenolic coated nickel–titanium surfaces","authors":"Simon Longela,&nbsp;Athanasios Chatzitakis","doi":"10.1049/bsbt.2018.0018","DOIUrl":"https://doi.org/10.1049/bsbt.2018.0018","url":null,"abstract":"<div>\u0000 <p>The biocompatibility of implantable nickel–titanium biomaterials relies on the quality of their surfaces. In this study, nickel–titanium surfaces are coated with phenolic thin films of tannic acid and pyrogallol with the purpose of studying their corrosion resistance in physiological environments. Three tests are performed: the open-circuit potential test, potentiodynamic polarisation and potentiostatic electrochemical impedance spectroscopy. Polarisation measurements are scrutinised in order to gain knowledge concerning the kinetics of the cathodic and anodic reactions, while the open-circuit potentials and impedance spectroscopy help to study the electrolyte–surficial interactions. It is found that coating nitinol with polyphenols results in the depletion of the native oxide layer and thus a decrease of corrosion resistance. Pyrogallic treated nitinol surfaces (with a corrosion rate of 0.119 mm/year) are half as electrochemically corrosion resistive as tannic acid-coated substrate. Therefore, it is proposed that tannic treated nitinol would be a better option if implanted on biomaterial surfaces.</p>\u0000 </div>","PeriodicalId":52235,"journal":{"name":"Biosurface and Biotribology","volume":"6 1","pages":"25-30"},"PeriodicalIF":0.0,"publicationDate":"2020-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ietresearch.onlinelibrary.wiley.com/doi/epdf/10.1049/bsbt.2018.0018","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"91822537","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Bio-inspired nano rotor investigation based on UVLM 基于UVLM的仿生纳米转子研究
Biosurface and Biotribology Pub Date : 2020-02-04 DOI: 10.1049/bsbt.2019.0019
Zhao Shanyong, Liu Zhen, Sun Yachuan, Dang Tianjiao, Li Shiqi
{"title":"Bio-inspired nano rotor investigation based on UVLM","authors":"Zhao Shanyong,&nbsp;Liu Zhen,&nbsp;Sun Yachuan,&nbsp;Dang Tianjiao,&nbsp;Li Shiqi","doi":"10.1049/bsbt.2019.0019","DOIUrl":"10.1049/bsbt.2019.0019","url":null,"abstract":"<div>\u0000 <p>Nano rotor is of great value in military and civilian applications. Due to its nano size, it works at an ultra-low Reynolds number and aerodynamic performance deteriorates dramatically. The bio-inspired nano rotor is carried out to improve the rotor propulsive performance. Unsteady vortex lattice method (UVLM) model is established fully considering the influence of induced drag and wake vortex distortion on aerodynamic forces. The aim is to quickly and accurately simulate the flow field around the bio-inspired nano rotor and to efficiently perform the aerodynamic calculation to optimise the design of the bio-inspired rotor. The rotor parameters and motion parameters such as aspect ratio, taper ratio and camber are studied using UVLM. It is found that the aerodynamic performance of the rotor increased with the aspect ratio. The quality factor changes parabolically with the taper ratio and camber, and there is an optimal value for the ratio and camber, respectively. The influences of pitching angle and frequency are investigated as well. Results show that the bio-inspired motion improves the propulsion performance of nano rotor.</p>\u0000 </div>","PeriodicalId":52235,"journal":{"name":"Biosurface and Biotribology","volume":"6 1","pages":"20-24"},"PeriodicalIF":0.0,"publicationDate":"2020-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1049/bsbt.2019.0019","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43525211","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Tribological behaviour of two kinds of typical hydrogel contact lenses in different lubricants 两种典型水凝胶隐形眼镜在不同润滑剂中的摩擦学行为
Biosurface and Biotribology Pub Date : 2019-11-28 DOI: 10.1049/bsbt.2019.0029
D. Qin, Li‐Ting Zhu, Teng Zhou, Z. Liao, M. Liang, L. Qin, Z. Cai
{"title":"Tribological behaviour of two kinds of typical hydrogel contact lenses in different lubricants","authors":"D. Qin, Li‐Ting Zhu, Teng Zhou, Z. Liao, M. Liang, L. Qin, Z. Cai","doi":"10.1049/bsbt.2019.0029","DOIUrl":"https://doi.org/10.1049/bsbt.2019.0029","url":null,"abstract":"Contact lenses have a special effect on the treatment of some eye diseases. The tribological behaviour of soft contact lenses considerably influences their clinical performance. Improper wearing of contact lenses can lead to mechanical damage of the contact interface, which can lead to pathological changes in the eyeball. In this study, the sliding friction of two kinds of typical contact lens materials (hilaficon-B and lotrafilcon-B) in three lubricants (distilled water, care solution, and eye drop) and tribological parameters are studied, using PMMA as a control. Hydrogels have high water content but the dehydration rate is high. Silicone hydrogels have low initial water content but low dehydration rates. The friction test in distilled water gives the highest coefficient of friction value. The care solution and eye drop significantly reduce the friction coefficient of the lens due to the formation of tribofilm.","PeriodicalId":52235,"journal":{"name":"Biosurface and Biotribology","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2019-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47631485","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信