Zr2.5Nb 的热氮化脱氧和生物生物学特性

IF 1.6 Q4 ENGINEERING, BIOMEDICAL
Liuwang Zhang, Jiangchuan Xu, Hao Liu, Yong Luo
{"title":"Zr2.5Nb 的热氮化脱氧和生物生物学特性","authors":"Liuwang Zhang,&nbsp;Jiangchuan Xu,&nbsp;Hao Liu,&nbsp;Yong Luo","doi":"10.1049/bsb2.70005","DOIUrl":null,"url":null,"abstract":"<p>Zirconium and its alloys are considered to be materials for artificial joints because of their excellent biocompatibility. In this study, we proposed the introduction of high-purity iron beads as external deoxidisers to inhibit the oxidation of Zr2.5Nb during thermal nitriding and investigated the biotribological properties of this alloy after deoxidation. Zr2.5Nb samples were subjected to deoxidation thermal nitriding at 900°C and 1000°C for 4 h. The main phase on the surface was ZrN, which was accompanied by a minor phase of unsaturated zirconium oxides (ZrO<sub>0.33</sub>, ZrO<sub>0.27</sub>). The thickness of the ZrN ceramic layer increased from 5.26 ± 0.37 μm to 7.78 ± 0.19 μm. During electrochemical friction–corrosion test, the open-circuit potential (OCP) and coefficient of friction (COF) values for the sample prepared at 900°C were −809.8 mV and 0.3015, and those for the sample prepared at 1000°C were −682.3 mV and 0.3168. The samples that underwent deoxidation thermal nitriding exhibited better friction–corrosion resistance and a lower friction coefficient than the original sample. Additionally, the volume wear loss was reduced by 50.53% and 62.27%, also demonstrating the superior biotribological properties achieved through deoxidation thermal nitriding.</p>","PeriodicalId":52235,"journal":{"name":"Biosurface and Biotribology","volume":"11 1","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2025-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/bsb2.70005","citationCount":"0","resultStr":"{\"title\":\"Thermal Nitridation Deoxygenation and Biotribological Properties of Zr2.5Nb\",\"authors\":\"Liuwang Zhang,&nbsp;Jiangchuan Xu,&nbsp;Hao Liu,&nbsp;Yong Luo\",\"doi\":\"10.1049/bsb2.70005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Zirconium and its alloys are considered to be materials for artificial joints because of their excellent biocompatibility. In this study, we proposed the introduction of high-purity iron beads as external deoxidisers to inhibit the oxidation of Zr2.5Nb during thermal nitriding and investigated the biotribological properties of this alloy after deoxidation. Zr2.5Nb samples were subjected to deoxidation thermal nitriding at 900°C and 1000°C for 4 h. The main phase on the surface was ZrN, which was accompanied by a minor phase of unsaturated zirconium oxides (ZrO<sub>0.33</sub>, ZrO<sub>0.27</sub>). The thickness of the ZrN ceramic layer increased from 5.26 ± 0.37 μm to 7.78 ± 0.19 μm. During electrochemical friction–corrosion test, the open-circuit potential (OCP) and coefficient of friction (COF) values for the sample prepared at 900°C were −809.8 mV and 0.3015, and those for the sample prepared at 1000°C were −682.3 mV and 0.3168. The samples that underwent deoxidation thermal nitriding exhibited better friction–corrosion resistance and a lower friction coefficient than the original sample. Additionally, the volume wear loss was reduced by 50.53% and 62.27%, also demonstrating the superior biotribological properties achieved through deoxidation thermal nitriding.</p>\",\"PeriodicalId\":52235,\"journal\":{\"name\":\"Biosurface and Biotribology\",\"volume\":\"11 1\",\"pages\":\"\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2025-04-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1049/bsb2.70005\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biosurface and Biotribology\",\"FirstCategoryId\":\"1087\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1049/bsb2.70005\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biosurface and Biotribology","FirstCategoryId":"1087","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/bsb2.70005","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

摘要

锆及其合金具有良好的生物相容性,因此被认为是人工关节的材料。在这项研究中,我们提出了引入高纯度铁珠作为外部脱氧剂来抑制 Zr2.5Nb 在热氮化过程中的氧化,并研究了这种合金在脱氧后的生物ribological 特性。Zr2.5Nb 样品在 900°C 和 1000°C 温度下脱氧热氮化 4 小时,表面主要相为 ZrN,并伴有不饱和锆氧化物(ZrO0.33、ZrO0.27)小相。ZrN 陶瓷层的厚度从 5.26 ± 0.37 μm 增加到 7.78 ± 0.19 μm。在电化学摩擦腐蚀测试中,900°C 下制备的样品的开路电位(OCP)和摩擦系数(COF)值分别为 -809.8 mV 和 0.3015,1000°C 下制备的样品的开路电位(OCP)和摩擦系数(COF)值分别为 -682.3 mV 和 0.3168。与原始样品相比,经过脱氧热氮化处理的样品具有更好的耐摩擦腐蚀性能和更低的摩擦系数。此外,体积磨损损失分别减少了 50.53% 和 62.27%,这也证明了脱氧热氮化处理所获得的优异生物ribological 特性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Thermal Nitridation Deoxygenation and Biotribological Properties of Zr2.5Nb

Thermal Nitridation Deoxygenation and Biotribological Properties of Zr2.5Nb

Zirconium and its alloys are considered to be materials for artificial joints because of their excellent biocompatibility. In this study, we proposed the introduction of high-purity iron beads as external deoxidisers to inhibit the oxidation of Zr2.5Nb during thermal nitriding and investigated the biotribological properties of this alloy after deoxidation. Zr2.5Nb samples were subjected to deoxidation thermal nitriding at 900°C and 1000°C for 4 h. The main phase on the surface was ZrN, which was accompanied by a minor phase of unsaturated zirconium oxides (ZrO0.33, ZrO0.27). The thickness of the ZrN ceramic layer increased from 5.26 ± 0.37 μm to 7.78 ± 0.19 μm. During electrochemical friction–corrosion test, the open-circuit potential (OCP) and coefficient of friction (COF) values for the sample prepared at 900°C were −809.8 mV and 0.3015, and those for the sample prepared at 1000°C were −682.3 mV and 0.3168. The samples that underwent deoxidation thermal nitriding exhibited better friction–corrosion resistance and a lower friction coefficient than the original sample. Additionally, the volume wear loss was reduced by 50.53% and 62.27%, also demonstrating the superior biotribological properties achieved through deoxidation thermal nitriding.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biosurface and Biotribology
Biosurface and Biotribology Engineering-Mechanical Engineering
CiteScore
1.70
自引率
0.00%
发文量
27
审稿时长
11 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信