npj women's health最新文献

筛选
英文 中文
Real world perspectives on endometriosis disease phenotyping through surgery, omics, health data, and artificial intelligence.
npj women's health Pub Date : 2025-01-01 Epub Date: 2025-02-06 DOI: 10.1038/s44294-024-00052-w
Camran R Nezhat, Tomiko T Oskotsky, Joshua F Robinson, Susan J Fisher, Angie Tsuei, Binya Liu, Juan C Irwin, Brice Gaudilliere, Marina Sirota, David K Stevenson, Linda C Giudice
{"title":"Real world perspectives on endometriosis disease phenotyping through surgery, omics, health data, and artificial intelligence.","authors":"Camran R Nezhat, Tomiko T Oskotsky, Joshua F Robinson, Susan J Fisher, Angie Tsuei, Binya Liu, Juan C Irwin, Brice Gaudilliere, Marina Sirota, David K Stevenson, Linda C Giudice","doi":"10.1038/s44294-024-00052-w","DOIUrl":"10.1038/s44294-024-00052-w","url":null,"abstract":"<p><p>Endometriosis is an enigmatic disease whose diagnosis and management are being transformed through innovative surgical, molecular, and computational technologies. Integrating single-cell and other omic disease data with clinical and surgical metadata can identify multiple disease subtypes with translation to novel diagnostics and therapeutics. Herein, we present real-world perspectives on endometriosis and the importance of multidisciplinary collaboration in informing molecular, epidemiologic, and cell-specific data in the clinical and surgical contexts.</p>","PeriodicalId":520241,"journal":{"name":"npj women's health","volume":"3 1","pages":"8"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11802455/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143384932","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Quantitative and longitudinal assessment of human placental inflammation using diffusion basis spectrum imaging. 利用扩散基谱成像对人类胎盘炎症进行定量和纵向评估。
npj women's health Pub Date : 2025-01-01 Epub Date: 2025-01-03 DOI: 10.1038/s44294-024-00049-5
Zhexian Sun, Wenjie Wu, Zezhen Xiang, Hansong Gao, Weina Ju, Cherilyn Uhm, Ian S Hagemann, Pamela K Woodard, Nanbert Zhong, Alison G Cahill, Qing Wang, Yong Wang
{"title":"Quantitative and longitudinal assessment of human placental inflammation using diffusion basis spectrum imaging.","authors":"Zhexian Sun, Wenjie Wu, Zezhen Xiang, Hansong Gao, Weina Ju, Cherilyn Uhm, Ian S Hagemann, Pamela K Woodard, Nanbert Zhong, Alison G Cahill, Qing Wang, Yong Wang","doi":"10.1038/s44294-024-00049-5","DOIUrl":"https://doi.org/10.1038/s44294-024-00049-5","url":null,"abstract":"<p><p>Besides exchanging nutrients, gases, and wastes, placenta is an intermediary between maternal and fetal immune systems. However, no method exists to safely image and monitor placental inflammation during pregnancy. We customized a Magnetic Resonance Imaging (MRI) method, diffusion basis spectrum imaging (DBSI), to measure immune cells in placenta. We validated placental DBSI in simulations and ex-vivo specimens, then applied it to 202 MRI scans from 82 patients whose placentas were classified as non-inflammation (<i>n</i> = 70) or inflammation (<i>n</i> = 12). Our method imaged the 3D distribution of immune cells, revealing significantly greater infiltration in the inflammation placentas from early (2.8% ± 0.7% vs. 4.8% ± 0.65%, <i>p</i> < 0.01) to late pregnancy (4.75% ± 0.9% vs. 7.25% ± 2.13%, <i>p</i> < 0.01). DBSI detects elevated immune cell infiltration associated with placental inflammation and enables non-invasive imaging of placental inflammation, offering early detection and monitoring throughout pregnancy, facilitating personalized care and potentially improving pregnancy outcomes without ionizing radiation.</p>","PeriodicalId":520241,"journal":{"name":"npj women's health","volume":"3 1","pages":"1"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11698687/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142934408","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cervical mucus in linked human Cervix and Vagina Chips modulates vaginal dysbiosis.
npj women's health Pub Date : 2025-01-01 Epub Date: 2025-01-29 DOI: 10.1038/s44294-025-00054-2
Ola Gutzeit, Aakanksha Gulati, Zohreh Izadifar, Anna Stejskalova, Hassan Rhbiny, Justin Cotton, Bogdan Budnik, Sanjid Shahriar, Girija Goyal, Abidemi Junaid, Donald E Ingber
{"title":"Cervical mucus in linked human Cervix and Vagina Chips modulates vaginal dysbiosis.","authors":"Ola Gutzeit, Aakanksha Gulati, Zohreh Izadifar, Anna Stejskalova, Hassan Rhbiny, Justin Cotton, Bogdan Budnik, Sanjid Shahriar, Girija Goyal, Abidemi Junaid, Donald E Ingber","doi":"10.1038/s44294-025-00054-2","DOIUrl":"10.1038/s44294-025-00054-2","url":null,"abstract":"<p><p>This study explores the protective role of cervicovaginal mucus in maintaining vaginal health, particularly in relation to bacterial vaginosis (BV), using organ chip technology. By integrating human Cervix and Vagina Chips, we demonstrated that cervical mucus significantly reduces inflammation and epithelial damage caused by a dysbiotic microbiome commonly associated with BV. Proteomic analysis of the Vagina Chip, following exposure to mucus from the Cervix Chip, revealed differentially abundant proteins, suggesting potential biomarkers and therapeutic targets for BV management. Our findings highlight the essential function of cervical mucus in preserving vaginal health and underscore the value of organ chip models for studying complex interactions within the female reproductive tract. This research provides new insights into the mechanisms underlying vaginal dysbiosis and opens avenues for developing targeted therapies and diagnostic tools to enhance women's reproductive health.</p>","PeriodicalId":520241,"journal":{"name":"npj women's health","volume":"3 1","pages":"5"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11779628/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143083092","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信