Applied Catalysis B: Environment and Energy最新文献

筛选
英文 中文
Selective electrosynthesis of ammonia via nitric oxide electroreduction catalyzed by copper nanowires infused in nitrogen-doped carbon nanorods 在掺氮碳纳米棒中注入铜纳米线催化下,通过一氧化氮电还原选择性电合成氨
Applied Catalysis B: Environment and Energy Pub Date : 2024-09-05 DOI: 10.1016/j.apcatb.2024.124577
Dinesh Dhanabal, Yuyeon Song, Seoyoung Jang, Sangaraju Shanmugam
{"title":"Selective electrosynthesis of ammonia via nitric oxide electroreduction catalyzed by copper nanowires infused in nitrogen-doped carbon nanorods","authors":"Dinesh Dhanabal, Yuyeon Song, Seoyoung Jang, Sangaraju Shanmugam","doi":"10.1016/j.apcatb.2024.124577","DOIUrl":"https://doi.org/10.1016/j.apcatb.2024.124577","url":null,"abstract":"The electrochemical nitric oxide reduction reaction (eNORR) is meticulously investigated as an alternative to the energy intensive Haber-Bosch process to produce Ammonia (NH). However, the eNORR is hindered by NH selectivity due to side reactions and mass-transfer limitations. In this work, we rationally designed copper nanowires (Cu NWs) infused in the lotus-root-like multi-nano-channels of the porous N-doped carbon nanorods (Cu-mNCNR) for a high selective eNORR to synthesize NH at ambient conditions. The optimized catalyst, Cu-mNCNR2, has achieved the highest NH Faradaic efficiency of 79% with NH yield rate of 34.5 μmol cm h at −0.4 V. Moreover, the Cu-mNCNR2 has demonstrated a vigorous performance in the 24 h continuous NO electrolysis to produce NH. Additionally, a prototype device, the Zn-NO battery, was demonstrated. This study shows that the rational design of a catalyst considering mass-transfer limitations is crucial to achieving high selective NH electrosynthesis in eNORR.","PeriodicalId":516528,"journal":{"name":"Applied Catalysis B: Environment and Energy","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142250000","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A highly active and stable Pd/15CoAlOx catalyst with Pd-Co composite interfaces for methane combustion 用于甲烷燃烧的具有 Pd-Co 复合界面的高活性、高稳定性 Pd/15CoAlOx 催化剂
Applied Catalysis B: Environment and Energy Pub Date : 2024-09-05 DOI: 10.1016/j.apcatb.2024.124559
Jieying Cai, Shenghai Wu, Miaomiao Liu, Yan Zhang, Meng Wang, Yun Liu, Yunbo Yu, Wenpo Shan
{"title":"A highly active and stable Pd/15CoAlOx catalyst with Pd-Co composite interfaces for methane combustion","authors":"Jieying Cai, Shenghai Wu, Miaomiao Liu, Yan Zhang, Meng Wang, Yun Liu, Yunbo Yu, Wenpo Shan","doi":"10.1016/j.apcatb.2024.124559","DOIUrl":"https://doi.org/10.1016/j.apcatb.2024.124559","url":null,"abstract":"A series of Pd/yCoAlO (where y represents the Co/AlO mass ratio, ranging from 0 to 20.0 wt%) catalysts for CH combustion were synthesized, among which the Pd/15CoAlO catalyst exhibited excellent activity, stability and water resistance. HRTEM, XRD, and Raman results indicated that the Pd/15CoAlO catalyst comprised two phases, namely CoAlO and CoO. H-TPR, O-TPD, and in-situ DRIFTS revealed that Pd/15CoAlO featuring Pd-Co composite interfaces strengthened the anchoring of PdO and facilitated electron transfer between Pd-Co interfaces. Moreover, active oxygen species were enriched at the interface, which promoted the reaction pathway involving the change from methoxy to formate, rather than from methyl to formate. Multiple characterizations and analyses indicated that Pd/15CoAlO exhibited a MSI weaker than the Pd-CoO interface but stronger than that observed at the Pd-AlO interface. The appropriate level of interaction avoided the excessive oxidation of Pd, ensuring the presence of a substantial quantity of unsaturated Pd sites.","PeriodicalId":516528,"journal":{"name":"Applied Catalysis B: Environment and Energy","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142205116","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Rapid reconstruction of nickel iron hydrogen cyanamide with in-situ produced proton acceptor for efficient oxygen evolution 利用原位生产的质子受体快速重构氰氨化镍铁氢,实现高效氧气进化
Applied Catalysis B: Environment and Energy Pub Date : 2024-09-05 DOI: 10.1016/j.apcatb.2024.124561
Muhammad Ajmal, Shishi Zhang, Xiaolei Guo, Xiaokang Liu, Chengxiang Shi, Ruijie Gao, Zhen-Feng Huang, Lun Pan, Xiangwen Zhang, Ji-Jun Zou
{"title":"Rapid reconstruction of nickel iron hydrogen cyanamide with in-situ produced proton acceptor for efficient oxygen evolution","authors":"Muhammad Ajmal, Shishi Zhang, Xiaolei Guo, Xiaokang Liu, Chengxiang Shi, Ruijie Gao, Zhen-Feng Huang, Lun Pan, Xiangwen Zhang, Ji-Jun Zou","doi":"10.1016/j.apcatb.2024.124561","DOIUrl":"https://doi.org/10.1016/j.apcatb.2024.124561","url":null,"abstract":"Metal oxyhydroxide (MOOH) through irreversible reconstructed fabrication from transition metal compounds are highly efficient oxygen evolution reaction (OER) electrocatalysts but face limits from adsorption energy scaling relationship and sluggish deprotonation kinetics. Herein, we present Fe-doped nickel hydrogen cyanamide (NiFe-HC), which is rapidly surface reconstructed into NiFe(OOH)-HC after OER. In-situ Raman spectroscopy and density functional theory (DFT) calculations, revealed that under OER conditions, -HNCN- converts into -NCN- ligand incorporating its abundant and uniform distribution across the active sites. DFT calculations further indicate that Fe predominantly acts as the active site, with -NCN- ligands contribute to the OER by facilitating the deprotonation of *OH in the rate-determining step (RDS), acting effectively as proton acceptor. The ensemble effect between Fe and -NCN- ligand forms the foundation of the exceptional electrocatalytic performance of NiFe(OOH)-HC (190 mV at 20 mA·cm). This discovery offers insights for designing innovative MOOH pre-catalysts to enhance OER efficiency.","PeriodicalId":516528,"journal":{"name":"Applied Catalysis B: Environment and Energy","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142250050","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Foam-structured Fe catalysts for enhanced heat and mass transfer in synthesis of olefins from syngas 在合成气合成烯烃过程中增强传热和传质的泡沫结构铁催化剂
Applied Catalysis B: Environment and Energy Pub Date : 2024-09-05 DOI: 10.1016/j.apcatb.2024.124569
Zhiqiang Zhang, Yu Le, Lei Jing, Gongxun Huang, Jincan Kang, Qinghong Zhang, Ye Wang
{"title":"Foam-structured Fe catalysts for enhanced heat and mass transfer in synthesis of olefins from syngas","authors":"Zhiqiang Zhang, Yu Le, Lei Jing, Gongxun Huang, Jincan Kang, Qinghong Zhang, Ye Wang","doi":"10.1016/j.apcatb.2024.124569","DOIUrl":"https://doi.org/10.1016/j.apcatb.2024.124569","url":null,"abstract":"The Fischer-Tropsch (FT) synthesis, characterized by its highly exothermic and high-throughput nature, traditionally yields a mix of C hydrocarbons and C1 by-products, which adversely affect carbon utilization efficiency. Herein, we design a Fe-foam structured catalyst to selectively produce high-value olefins in FT process. The Na-Zn-Fe/Fe-foam catalysts are prepared through a hydrothermal synthesis method, where the FeCO precursor is formed from Fe-foam, followed by addition of sodium and zinc modifiers. These catalysts achieve a remarkable olefin selectivity of ∼80 % and a space-time yield of ∼0.70 g g h at a CO conversion of 98 %, and further demonstrate outstanding stability. The structured catalysts, with expansive void volume and fully open network architecture, provide superior mass and heat transfer capabilities, and effectively mitigate the generation of CO and CH, offering a significant advantage in FT synthesis. This work presents a new strategy for the development of efficient catalysts in high exothermic catalytic reactions.","PeriodicalId":516528,"journal":{"name":"Applied Catalysis B: Environment and Energy","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142205088","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The electron shuttle of aloe-emodin promotes the Cu-FeOOH solid solution photocatalytic membrane to activate hydrogen peroxide for the degradation of tannic in traditional Chinese medicine wastewater 芦荟大黄素的电子穿梭促进 Cu-FeOOH 固溶体光催化膜激活过氧化氢降解中药废水中的鞣酸
Applied Catalysis B: Environment and Energy Pub Date : 2024-09-04 DOI: 10.1016/j.apcatb.2024.124566
Mengzhen Zhu, Jiajia Li, Manhua Chen, Yulu Liu, Qiong Mei, Hongbo Liu, Yuping Tang, Qizhao Wang
{"title":"The electron shuttle of aloe-emodin promotes the Cu-FeOOH solid solution photocatalytic membrane to activate hydrogen peroxide for the degradation of tannic in traditional Chinese medicine wastewater","authors":"Mengzhen Zhu, Jiajia Li, Manhua Chen, Yulu Liu, Qiong Mei, Hongbo Liu, Yuping Tang, Qizhao Wang","doi":"10.1016/j.apcatb.2024.124566","DOIUrl":"https://doi.org/10.1016/j.apcatb.2024.124566","url":null,"abstract":"The inactive macromolecular substances would result in the membrane fouling and reduce the membrane flux in treating traditional Chinese medicine wastewater. Here, we report a novel photocatalytic membrane and utilize aloe-emodin (AE) as electron shuttle synergistically doped into Cu-FeOOH solid solution, then support the photocatalyst AE/Cu-FeOOH on PVDF membrane, which can effectively degrade tannic (95.69 %, 60 min). Furthermore, even after 6 hours of tannic solution filtration, the membrane maintains a high flux of 517 L m h bar. Combined with various spectral and photoelectric performance tests confirmed that AE/Cu-FeOOH-PVDF possesses high separation and transfer efficiency of photogenerated carriers. Meanwhile DFT calculation showed that the composite has better adsorption properties and HO activation ability. AE provided e to Cu-FeOOH, which accelerated the redox reaction process of Fe and Cu ions and produced more stable active free radicals to degrade tannic. This study provides a more environmentally friendly approach for utilizing photocatalytic membranes in the treatment of traditional Chinese medicine wastewater.","PeriodicalId":516528,"journal":{"name":"Applied Catalysis B: Environment and Energy","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142205085","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Synergistically flexible-robust effects mediate the dynamic reconfiguration of perylene diimide polymer to enhance piezo-photocatalytic nitrate reduction 灵活-稳健的协同效应介导过二亚胺聚合物的动态重构,从而增强压电光催化硝酸盐还原能力
Applied Catalysis B: Environment and Energy Pub Date : 2024-09-03 DOI: 10.1016/j.apcatb.2024.124558
Jiwen Zhang, Kailong Lv, Jinke Cheng, Yuhui Liu, Yi Wang, Shuang-Feng Yin, Peng Chen
{"title":"Synergistically flexible-robust effects mediate the dynamic reconfiguration of perylene diimide polymer to enhance piezo-photocatalytic nitrate reduction","authors":"Jiwen Zhang, Kailong Lv, Jinke Cheng, Yuhui Liu, Yi Wang, Shuang-Feng Yin, Peng Chen","doi":"10.1016/j.apcatb.2024.124558","DOIUrl":"https://doi.org/10.1016/j.apcatb.2024.124558","url":null,"abstract":"Identifying the spatial dynamic reconstruction of π-conjugated polymers for efficient carrier transport and controlling the intermediate process of the reaction are urgent and formidable challenges. In this study, a fresh perspective has emerged proposing to synergistically enhance the adaptability and resilience of dynamic torsion patterns in π-conjugated polymers to mediate charge separation and molecular activation. Excitingly, the highest flexible-robust structure and polarity of naphthalene-linked perylene diimide polymer (N-PDA) demonstrates a highest nitrate reduction rate of 5.36 mmol g h under light irradiation and ultrasonic condition, which is 7.5 times that of H-PDA. Theoretical calculations and experimental observations indicate that the strongest flexible-robust structure of N-PDA enhances the inclination of the rigid plane and atomic bond length, resulting in an accelerated uneven distribution of charges, molecular polarity, and electronic coupling to facilitate charge separation dynamics. Moreover, it exposes active sites that promote the adsorption and activation of NO ions while simultaneously regulating intermediate hydrogenation processes. Our study offers innovative prospects for enhancing catalytic efficiency through the implementation of spatial steric configuration of π-conjugated polymers.","PeriodicalId":516528,"journal":{"name":"Applied Catalysis B: Environment and Energy","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142205086","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Near-infrared-responsive sea-urchin-like Ag6Si2O7/Bi19Br3S27 S-scheme heterojunction for efficient CO2 photoreduction 用于高效二氧化碳光电还原的近红外响应海胆状 Ag6Si2O7/Bi19Br3S27 S 型异质结
Applied Catalysis B: Environment and Energy Pub Date : 2024-09-03 DOI: 10.1016/j.apcatb.2024.124560
Kai Wang, Chuang Liu, Jingping Li, Qiang Cheng, Bin Liu, Jun Li
{"title":"Near-infrared-responsive sea-urchin-like Ag6Si2O7/Bi19Br3S27 S-scheme heterojunction for efficient CO2 photoreduction","authors":"Kai Wang, Chuang Liu, Jingping Li, Qiang Cheng, Bin Liu, Jun Li","doi":"10.1016/j.apcatb.2024.124560","DOIUrl":"https://doi.org/10.1016/j.apcatb.2024.124560","url":null,"abstract":"The construction of S-scheme heterojunctions effectively facilitates the spatial separation of photogenerated charge carriers for their involvement in photoreactions. However, the inefficient utilization of solar energy in these heterostructures is often due to unfavorable band-edge positions and suboptimal charge transport dynamics, which result in low photocatalytic efficiency when considering kinetic factors. In this study, sea urchin–like BiBrS/AgSiO S-scheme heterojunctions are fabricated, which exhibit excellent CO photoreduction performance under ultraviolet, visible, and near-infrared (NIR) light illumination. Experimental data and density functional theory calculations confirm the S-scheme charge transfer mechanisms, which enable the efficient separation of photogenerated carriers for CO reduction. Consequently, the optimized AgSiO/BiBrS heterostructures exhibit superior CO photoreduction activity under NIR light irradiation. This approach offers a strategy for designing advanced NIR-light-responsive photocatalysts for efficient CO photoreduction.","PeriodicalId":516528,"journal":{"name":"Applied Catalysis B: Environment and Energy","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142226215","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Boosting hydrogenation properties of supported Cu-based catalysts by replacing Cu0 active sites 通过替换 Cu0 活性位点提高支撑铜基催化剂的氢化性能
Applied Catalysis B: Environment and Energy Pub Date : 2024-09-03 DOI: 10.1016/j.apcatb.2024.124563
Bo Kang, Zhilin Chen, Jie Yang, Mingxin Lv, Hongli He, Guoxin Chen, Liyuan Huai, Chunlin Chen, Jian Zhang
{"title":"Boosting hydrogenation properties of supported Cu-based catalysts by replacing Cu0 active sites","authors":"Bo Kang, Zhilin Chen, Jie Yang, Mingxin Lv, Hongli He, Guoxin Chen, Liyuan Huai, Chunlin Chen, Jian Zhang","doi":"10.1016/j.apcatb.2024.124563","DOIUrl":"https://doi.org/10.1016/j.apcatb.2024.124563","url":null,"abstract":"Balancing the Cu/Cu ratio is a common strategy to improve catalytic activity of Cu-based catalysts but is still constrained by low atomic utilization and the inherent nature of charge distribution. Herein, we reported a strategy of replacing the Cu active sites in Cu-based catalysts by constructing bimetallic sites on ceria, which consist of spatially separated trace amounts of palladium metal and plate-shaped Cu clusters with one-atom layers. The catalytic activity of the prepared CuPd/CeO-FA catalyst (using formic acid) was 4 times that of conventional CuPd/CeO-H catalyst in selective hydrogenation of 5-hydroxymethylfurfural to 2,5-bis(hydroxymethyl)furan, even outperforming some existing noble metal catalysts. Multiple characterizations and theoretical calculations demonstrated that the Pd atom is the heterolytic activation site for H molecules while plate-shaped Cu metal clusters act as effective hydrogenation places. This directional control involving both spatial relationship and electronic structure of the active site provides a new strategy for designing hydrogenated catalysts.","PeriodicalId":516528,"journal":{"name":"Applied Catalysis B: Environment and Energy","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142205128","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A highly active and stable palladium zeolite catalyst for wet methane combustion 用于湿式甲烷燃烧的高活性、高稳定性钯沸石催化剂
Applied Catalysis B: Environment and Energy Pub Date : 2024-09-03 DOI: 10.1016/j.apcatb.2024.124562
Xuechao Tan, Suk Bong Hong
{"title":"A highly active and stable palladium zeolite catalyst for wet methane combustion","authors":"Xuechao Tan, Suk Bong Hong","doi":"10.1016/j.apcatb.2024.124562","DOIUrl":"https://doi.org/10.1016/j.apcatb.2024.124562","url":null,"abstract":"Natural gas engines are the most viable alternative to diesel and gasoline ones. However, the current state-of-art catalyst, palladium (Pd) on alumina, for eliminating unburnt methane from engine exhaust suffers from high light-off temperature (> 400 °C) and poor water tolerance. Here we systematically investigated the effects of zeolite structure and Si/Al ratio, catalyst calcination temperature and extra-framework cation type on catalytic performance of zeolite-supported Pd catalysts for wet methane combustion to overcome these limitations. We found that a 3.0 wt% Pd catalyst supported on Na-post-exchanged 500 °C-calcined IWV zeolite with a Si/Al ratio of 45 has a light-off temperature as low as 290 °C for methane combustion in the presence of 10 % water vapor while maintaining ca. 85 % methane conversion at 330 °C for 100 h. This study provides a new direction for bringing supported Pd catalysts close to real-world applications.","PeriodicalId":516528,"journal":{"name":"Applied Catalysis B: Environment and Energy","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142205084","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Ternary ordered L10-Pt-Co-Fe intermetallics for efficient ORR catalysis through dissociation pathway 通过解离途径实现高效 ORR 催化的三元有序 L10-Pt-Co-Fe 金属间化合物
Applied Catalysis B: Environment and Energy Pub Date : 2024-09-02 DOI: 10.1016/j.apcatb.2024.124556
Yuekun Hu, Mingwang Lu, Guanhua Zhang, Xiaowei Zhao, Yan Liu, Xiaojing Yang, Xiaofei Yu, Xinghua Zhang, Zunming Lu, Lanlan Li
{"title":"Ternary ordered L10-Pt-Co-Fe intermetallics for efficient ORR catalysis through dissociation pathway","authors":"Yuekun Hu, Mingwang Lu, Guanhua Zhang, Xiaowei Zhao, Yan Liu, Xiaojing Yang, Xiaofei Yu, Xinghua Zhang, Zunming Lu, Lanlan Li","doi":"10.1016/j.apcatb.2024.124556","DOIUrl":"https://doi.org/10.1016/j.apcatb.2024.124556","url":null,"abstract":"Developing efficient and durable Pt-based electrocatalysts for oxygen reduction reaction (ORR) is critical for the practical application of fuel cells but still remains challenge at present. Here we successfully synthesized a series of ternary L1-PtCoFe (x=0.33, 0.50 and 0.67) intermetallic nanoparticles (NPs) supported on reduced graphene oxide for ORR catalysis. L1-PtCoFe exhibits the highest mass activity (MA) of 0.93 A mg at 0.9 V (1.82 times the corresponding binary L1-PtCo intermetallics) and minimal activity loss (24.73 % loss in MA) after 30,000 potential cycles. By Density Functional Theory calculations, the excellent performance of ternary L1-PtCoFe can be ascribed to: (1) more efficient electronic structure regulation caused by dual-element driven electron transfer, which leads to more electron accumulation on Pt and weakens the over-binding of oxygen-containing species, (2) the unique two-center bridge pattern of O adsorption over Pt-Fe site leads to ORR proceeding the dissociative mechanism, avoiding the formation of OOH*.","PeriodicalId":516528,"journal":{"name":"Applied Catalysis B: Environment and Energy","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142205111","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信