Applied Catalysis B: Environment and Energy最新文献

筛选
英文 中文
In-situ electrochemical upcycling ammonia from wastewater-level nitrate with a natural hematite electrode: Regulation, performance, and application 利用天然赤铁矿电极从废水硝酸盐中就地电化学回收氨:调节、性能和应用
Applied Catalysis B: Environment and Energy Pub Date : 2024-08-02 DOI: 10.1016/j.apcatb.2024.124467
Xing Wu, Zhenhui Song, Zhigong Liu, Xi Tang, Fubing Yao, Feiping Zhao, Xiaobo Min, Chong-Jian Tang
{"title":"In-situ electrochemical upcycling ammonia from wastewater-level nitrate with a natural hematite electrode: Regulation, performance, and application","authors":"Xing Wu, Zhenhui Song, Zhigong Liu, Xi Tang, Fubing Yao, Feiping Zhao, Xiaobo Min, Chong-Jian Tang","doi":"10.1016/j.apcatb.2024.124467","DOIUrl":"https://doi.org/10.1016/j.apcatb.2024.124467","url":null,"abstract":"Electrochemical reduction of nitrate (NORR) to ammonia (NH/NH) offers promising prospects for NO treatment. However, this process still suffers from NH causing secondary pollution and catalyst deactivation in high-concentration NO wastewater. Herein, a high-performance system comprising a hematite (α-FeO) electrode and a water-resistant membrane achieved 97.6 % NO removal and 81.6 % NH as (NH)SO recovery at wastewater-level NO. The system exhibited an energy consumption of 62.2 kWh·Kg and a Faradaic efficiency of 85.9 %. spectroscopy and electrochemical measurements revealed that α-FeO acted as both an electron transfer mediator for reducing NO to NO and an active center for NH formation via NO/Fe(Ⅱ) redox. Density functional theory calculations identified *HNO to *NO as potential-determining step of NORR. Natural hematite-based system exhibited 74.8 % total inorganic nitrogen removal and 77.1 % NH recovery for actual photovoltaic wastewater. This study provides insights into the development of electrochemical systems for resourcefully treating NO-containing wastewater.","PeriodicalId":516528,"journal":{"name":"Applied Catalysis B: Environment and Energy","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141943029","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Amorphous Ru-based metallene with monometallic atomic interfaces for electrocatalytic hydrogen evolution in anion exchange membrane electrolyzer 具有单金属原子界面的非晶态 Ru 基金属,用于阴离子交换膜电解槽中的电催化氢进化
Applied Catalysis B: Environment and Energy Pub Date : 2024-08-02 DOI: 10.1016/j.apcatb.2024.124465
Yue Shi, Jiawei Fei, Hongdong Li, Caixia Li, Tianrong Zhan, Jianping Lai, Lei Wang
{"title":"Amorphous Ru-based metallene with monometallic atomic interfaces for electrocatalytic hydrogen evolution in anion exchange membrane electrolyzer","authors":"Yue Shi, Jiawei Fei, Hongdong Li, Caixia Li, Tianrong Zhan, Jianping Lai, Lei Wang","doi":"10.1016/j.apcatb.2024.124465","DOIUrl":"https://doi.org/10.1016/j.apcatb.2024.124465","url":null,"abstract":"Amorphous metallene is a prospective catalyst due to disordered atomic arrangement and abundant defects/edges. However, challenges persist in preparing amorphous metallene with atomic interface, primarily due to thermodynamic impediment of unconventional phase and difficulty in precise controlling of atomic interface. Here, we synthesized a new class of amorphous RuGa metallene (A-RuGa metallene) with abundant atomic interface by introducing trace atomic-dispersed Ga. The atomic interface between Ga-coordinated Ru and Ru achieves monometallic synergism during alkaline hydrogen evolution reaction. The turnover frequency value of A-RuGa metallene reaches 67 s at −0.1 V RHE. Meanwhile, the mass activity of A-RuGa metallene in anion exchange membrane electrolyzer reaches 5.2 A mg at 2.0 V, firstly surpassing commercial Pt/C (1.0 A mg). The trace atomic dispersed Ga could change the local valence state of monometallic Ru, thus promoting water adsorption and dissociation, optimizing H* adsorption and accelerating H* transport at the atomic level.","PeriodicalId":516528,"journal":{"name":"Applied Catalysis B: Environment and Energy","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141943015","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Excellent low-temperature activity and resistance to K-poisoning in NH3-SCR de-NOx reaction over CeSnOx with phosphorylation treatment catalyst 磷化处理催化剂 CeSnOx 在 NH3-SCR 脱氮氧化物反应中具有优异的低温活性和抗 K 中毒性能
Applied Catalysis B: Environment and Energy Pub Date : 2024-08-02 DOI: 10.1016/j.apcatb.2024.124464
Ziting Wang, Mihang Yao, Xiaoyu Niu, Yujun Zhu
{"title":"Excellent low-temperature activity and resistance to K-poisoning in NH3-SCR de-NOx reaction over CeSnOx with phosphorylation treatment catalyst","authors":"Ziting Wang, Mihang Yao, Xiaoyu Niu, Yujun Zhu","doi":"10.1016/j.apcatb.2024.124464","DOIUrl":"https://doi.org/10.1016/j.apcatb.2024.124464","url":null,"abstract":"Resistance to alkali metal poisoning remains a challenge for Ce-based denitration (de-NO) catalysts. In this paper, improved low-temperature performance and resistance to K poisoning were achieved by phosphorylating CeSnO. The activity tests revealed that the phosphorylated CeSnO (3 wt%P/CeSn) exhibited over 90 % NO conversion at 190–450 °C and >90 % NO conversion at 240–400 °C even after K poisoning. The mechanism of phosphorylation treatment against K poisoning was investigated by many characterizations and DFT calculation. The results showed that the phosphorylation treatment facilitated the interaction between Ce and Sn, and K interacts more preferentially with PO species. This prevents K from destroying the Ce-O-Sn structure to form a Ce-O-K structure, which in turn maintained the catalyst’s redox properties. Moreover, the phosphorylation treatment supplemented the acidity of 3 wt%P/CeSn compared with CeSnO. This effectively mitigated the reduction of acidity caused by K and ensured the adsorption and activation of NH on the catalyst surface.","PeriodicalId":516528,"journal":{"name":"Applied Catalysis B: Environment and Energy","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141943016","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Suppressing the hydrogen bonding interaction with *OOH toward efficient H2O2 electrosynthesis via remote electronic tuning of Co-N4 通过远程电子调谐 Co-N4 抑制与 *OOH 的氢键相互作用,实现高效 H2O2 电合成
Applied Catalysis B: Environment and Energy Pub Date : 2024-07-31 DOI: 10.1016/j.apcatb.2024.124448
Jiawei Zhang, Hongwei Zeng, Bingling He, Ying Liu, Jing Xu, Tengfei Niu, Chengsi Pan, Ying Zhang, Yang Lou, Yao Wang, Yuming Dong, Yongfa Zhu
{"title":"Suppressing the hydrogen bonding interaction with *OOH toward efficient H2O2 electrosynthesis via remote electronic tuning of Co-N4","authors":"Jiawei Zhang, Hongwei Zeng, Bingling He, Ying Liu, Jing Xu, Tengfei Niu, Chengsi Pan, Ying Zhang, Yang Lou, Yao Wang, Yuming Dong, Yongfa Zhu","doi":"10.1016/j.apcatb.2024.124448","DOIUrl":"https://doi.org/10.1016/j.apcatb.2024.124448","url":null,"abstract":"The non-covalent interaction that appears along with electronic tuning is often overlooked in interpreting the oxygen reduction reaction (ORR) dynamics, resulting in a limited understanding of the governing principles. Herein, through intricately engineering pedant substituents on porphyrins backbones, Co-N moieties featuring varied electronic configurations served as an exemplary model to elucidate the role of hydrogen bonding interaction appears along with electronic tuning in determining 2e ORR performance. Co-TEPP with an electron-deficient Co-N moiety emerges as a standout performer for O-to-HO conversion. Upon covalently linking the Co-TEPP monomer on rGO to form robust organic polymer structures (Co-TEPP-COP/rGO), superior HO selectivity (> 95 %), remarkable HO production rate (∼18.8 mol g h), and excellent performance durability are identified. Such optimized HO electrosynthesis could be attributed to the suppressed hydrogen bonding interaction between *OOH and electron-deficient Co-N moiety, which consequently weakens *OOH binding strength to favor HO electrosynthesis.","PeriodicalId":516528,"journal":{"name":"Applied Catalysis B: Environment and Energy","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141943020","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Surface hydroxylation engineering to boost oxygen evolution reaction on IrO2/TiO2 for PEM water electrolyzer 通过表面羟化工程促进用于 PEM 水电解槽的 IrO2/TiO2 上的氧进化反应
Applied Catalysis B: Environment and Energy Pub Date : 2024-07-31 DOI: 10.1016/j.apcatb.2024.124462
Chenlu Yang, Wenhui Ling, Yanping Zhu, Yunxiao Yang, Shu Dong, Chengyu Wu, Zhangrui Wang, Shuai Yang, Jun Li, Guoliang Wang, Yifan Huang, Bo Yang, Qingqing Cheng, Zhi Liu, Hui Yang
{"title":"Surface hydroxylation engineering to boost oxygen evolution reaction on IrO2/TiO2 for PEM water electrolyzer","authors":"Chenlu Yang, Wenhui Ling, Yanping Zhu, Yunxiao Yang, Shu Dong, Chengyu Wu, Zhangrui Wang, Shuai Yang, Jun Li, Guoliang Wang, Yifan Huang, Bo Yang, Qingqing Cheng, Zhi Liu, Hui Yang","doi":"10.1016/j.apcatb.2024.124462","DOIUrl":"https://doi.org/10.1016/j.apcatb.2024.124462","url":null,"abstract":"Dynamic evolutionary hypervalent Ir species (HVI) plays a decisive role in promoting the catalytic activity towards acidic oxygen evolution reaction (OER) on Ir-based electrocatalysts, but regulating the efficient formation of HVI remains a big challenge. Herein we propose surface hydroxylation engineering to accelerate the formation of HVI along the OER process on the OH-rich IrO/TiO electrocatalyst. In-situ/operando spectroscopies demonstrate that the high concentration OH ligand accelerates the formation of HVI. DFT calculation clarifies that the dynamically evolved HVI benefits to weakening the adsorption free energy and thus boosting the OER kinetics. Differential electrochemical mass spectrometry with O isotope labelling experiment further unveils that the OH ligand directly participates in the OER cycle, facilitating the rapid oxidation of Ir to Ir and the O-O bond formation. PEM water electrolyzer with the optimized IrO/TiO electrocatalyst delivers a low cell voltage of 1.787 V at 2 Acm with an inaccessible low Ir usage of ca. 0.08 g/kW, while maintaining a good stability over 350 h, with an estimated cost of US$0.88 kg of H, much lower than 2026 US-DOE target.","PeriodicalId":516528,"journal":{"name":"Applied Catalysis B: Environment and Energy","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141943017","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Precisely tailoring the d-band center of nickel sulfide for boosting overall water splitting 精确调整硫化镍的 d 波段中心,提高整体水分裂能力
Applied Catalysis B: Environment and Energy Pub Date : 2024-07-31 DOI: 10.1016/j.apcatb.2024.124461
Jianqing Zhou, Pengfei Li, Xinyi Xia, Yi Zhao, Zhihao Hu, Yunlong Xie, Lun Yang, Yisi Liu, Yue Du, Qiancheng Zhou, Luo Yu, Ying Yu
{"title":"Precisely tailoring the d-band center of nickel sulfide for boosting overall water splitting","authors":"Jianqing Zhou, Pengfei Li, Xinyi Xia, Yi Zhao, Zhihao Hu, Yunlong Xie, Lun Yang, Yisi Liu, Yue Du, Qiancheng Zhou, Luo Yu, Ying Yu","doi":"10.1016/j.apcatb.2024.124461","DOIUrl":"https://doi.org/10.1016/j.apcatb.2024.124461","url":null,"abstract":"d‐band center engineering is an effective approach to manipulate the electronic structure of an electrocatalyst for boosting water splitting performance. However, it is still challenging to precisely tailor the electronic structure with an optimized d‐band center for efficient hydrogen and oxygen evolution reactions (HER and OER) on one single catalyst simultaneously. Focusing on nickel sulfide (NiS), herein we applied dual-atom modification to precisely regulate the d‐band center of NiS, which dramatically enhances its bifunctional activity with outstanding HER and OER performance. Specifically, the V and Fe co-modified NiS achieves ultra-low overpotentials of 68 and 190 mV to output 10 mA cm in 1 M KOH for HER and OER, respectively. Theoretical calculations reveal that the strong electronic interactions between Ni 3d and V 3d/Fe 3d orbitals effectively tailor the d‐band center of NiS, resulting in optimized HER and OER intermediate adsorption, thus boosting the HER and OER simultaneously.","PeriodicalId":516528,"journal":{"name":"Applied Catalysis B: Environment and Energy","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141943023","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Stable and efficient chlorine evolution reaction with atomically dispersed Ru on surface tensile strained TiO2 表面拉伸应变二氧化钛上原子分散的 Ru 发生稳定高效的氯进化反应
Applied Catalysis B: Environment and Energy Pub Date : 2024-07-30 DOI: 10.1016/j.apcatb.2024.124456
Amol R. Jadhav, Xinghui Liu, P. Silambarasan, Vinit Kanade, Yang Liu, Ta Thi Thuy Nga, Taehun Yang, My Tran Kim, Yeonsu Han, Taesung Kim, Xiaodong Shao, Chunyi Zhi, Chung-Li Dong, Hyoyoung Lee
{"title":"Stable and efficient chlorine evolution reaction with atomically dispersed Ru on surface tensile strained TiO2","authors":"Amol R. Jadhav, Xinghui Liu, P. Silambarasan, Vinit Kanade, Yang Liu, Ta Thi Thuy Nga, Taehun Yang, My Tran Kim, Yeonsu Han, Taesung Kim, Xiaodong Shao, Chunyi Zhi, Chung-Li Dong, Hyoyoung Lee","doi":"10.1016/j.apcatb.2024.124456","DOIUrl":"https://doi.org/10.1016/j.apcatb.2024.124456","url":null,"abstract":"Developing highly efficient and selective electrocatalysts for the chlorine evolution reaction (CER) in the chloralkali industry is of great importance. Here, we report the discovery of a new electrocatalyst for CER consisting of atomically dispersed Ru sites on surface tensile strained TiO (Ru-S-TiO). The single-atom Ru species were stabilized on the strained TiO surface by strong metal-support interactions. The Ru-S-TiO is highly efficient, initiating CER at only 5 mV above the E, and has shown excellent stability for over 100 hours. It exhibited >95 % CER selectivity even in acidic media with low Cl concentrations (0.2 M). Our results demonstrate that the strong metal-support interactions between the atomically dispersed Ru species and the strained TiO surface are crucial for the high catalytic activity, selectivity, and stability of Ru-S-TiO for CER. Ru-S-TiO holds great promise as a viable alternative to existing mixed metal oxides-based electrocatalysts for CER in the chloralkali industry.","PeriodicalId":516528,"journal":{"name":"Applied Catalysis B: Environment and Energy","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141943018","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Bifunctional g-C3N4 nanospheres/CdZnS QDs S-scheme photocatalyst with boosted H2 evolution and furfural synthesis mechanism 具有促进 H2 演化和糠醛合成机制的 g-C3N4 纳米球/CdZnS QDs S 型双功能光催化剂
Applied Catalysis B: Environment and Energy Pub Date : 2024-07-29 DOI: 10.1016/j.apcatb.2024.124459
Guotai Sun, Zige Tai, Jianjun Zhang, Bei Cheng, Huogen Yu, Jiaguo Yu
{"title":"Bifunctional g-C3N4 nanospheres/CdZnS QDs S-scheme photocatalyst with boosted H2 evolution and furfural synthesis mechanism","authors":"Guotai Sun, Zige Tai, Jianjun Zhang, Bei Cheng, Huogen Yu, Jiaguo Yu","doi":"10.1016/j.apcatb.2024.124459","DOIUrl":"https://doi.org/10.1016/j.apcatb.2024.124459","url":null,"abstract":"Photocatalytic H evolution coupled with organic oxidation could replace the slow four-electron water oxidation and utilize charge carriers to obtain high-valued chemicals. Herein, inorganic CdZnS quantum dots (QDs) are skillfully deposited on g-CN nanospheres to construct an inorganic-polymeric S-scheme heterostructure. The CN-CdZnS photocatalyst presents enhanced light absorption, abundant active sites, and intimate interface contact. The optimized composite exhibits an enhanced H evolution rate of 582.3 μmol/g/h and a furfuryl alcohol (FAL) conversion of 84.2 %. Femtosecond transient absorption (fs-TA) spectroscopy, irradiation X-ray photoelectron spectroscopy (XPS), electron paramagnetic resonance (EPR), and theoretical calculation (DFT) verify the S-scheme mechanism, which promotes charge separation and strengthens carrier redox ability. infrared spectra reveal that FAL is first activated to CHO radical by holes in CdZnS and further oxidized to furfural (FF) with dehydrogenation of its hydroxyl group. This work supplies new insight into designing efficient photocatalysts for H generation and organic synthesis.","PeriodicalId":516528,"journal":{"name":"Applied Catalysis B: Environment and Energy","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141943022","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Structural evolution of cobalt for the production of long-chain paraffins by CO2 hydrogenation 通过二氧化碳加氢生产长链石蜡的钴结构演变
Applied Catalysis B: Environment and Energy Pub Date : 2024-07-29 DOI: 10.1016/j.apcatb.2024.124457
Heuntae Jo, Hee-Joon Chun, Junjung Rohmat Sugiarto, Muhammad Kashif Khan, Muhammad Irshad, Wonjoong Yoon, Seok Ki Kim, Jaehoon Kim
{"title":"Structural evolution of cobalt for the production of long-chain paraffins by CO2 hydrogenation","authors":"Heuntae Jo, Hee-Joon Chun, Junjung Rohmat Sugiarto, Muhammad Kashif Khan, Muhammad Irshad, Wonjoong Yoon, Seok Ki Kim, Jaehoon Kim","doi":"10.1016/j.apcatb.2024.124457","DOIUrl":"https://doi.org/10.1016/j.apcatb.2024.124457","url":null,"abstract":"A new role of alkali metals in the direct hydrogenation of CO to C species over Co catalysts was proposed. During the CO hydrogenation, Na-promotion encouraged a new structural evolution (i.e., a thin oxygen vacancy (O)-rich CoO/CoC shell and a Co core). This facilitated the migration of CHO and CO species produced at the shell to the adjacent CoC shell and Co core, where they undergo further chain growth. In contrast, Li- and K-promotion resulted in the generation of a thick and O-poor CoO shell without CoC, while in the absence of alkali metal promotion, Co was exposed as the outmost surface; in both the cases, methanation dominated. The ability of Na-promotion to remove –OH* from the Co surface helped maintain the thickness and valance state of the Co oxide shell. Thus, the Na-promotion developed the chain growth and CO producing core–shell structure, rather than any electronic promotional effects.","PeriodicalId":516528,"journal":{"name":"Applied Catalysis B: Environment and Energy","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141943019","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Interfacial linkage modulated amorphous molybdenum sulfide/bismuth halide perovskite heterojunction for enhanced visible-light-driven photocatalytic hydrogen evolution 用于增强可见光驱动的光催化氢气进化的界面连接调制非晶硫化钼/卤化铋过氧化物异质结
Applied Catalysis B: Environment and Energy Pub Date : 2024-07-29 DOI: 10.1016/j.apcatb.2024.124454
He Zhao, Rossella Greco, Rafal Sliz, Olli Pitkänen, Krisztian Kordas, Satu Ojala
{"title":"Interfacial linkage modulated amorphous molybdenum sulfide/bismuth halide perovskite heterojunction for enhanced visible-light-driven photocatalytic hydrogen evolution","authors":"He Zhao, Rossella Greco, Rafal Sliz, Olli Pitkänen, Krisztian Kordas, Satu Ojala","doi":"10.1016/j.apcatb.2024.124454","DOIUrl":"https://doi.org/10.1016/j.apcatb.2024.124454","url":null,"abstract":"Photocatalytic hydrogen evolution is a promising approach for direct solar-to-fuel conversion. Although significant research efforts have been put on the development of lead-free metal halide perovskites to reach excellent optoelectronic properties, their rational design for efficient heterojunction photocatalytic systems still poses challenges. Here, we report a new strategy to tailor the interface of hybrid tri(dimethylammonium) hexaiodobismuthate (DMABiI) and amorphous molybdenum sulfide (a-MoS) heterojunctions. Specifically, a-MoS was prepared with abundant apical S or bridging S ligands to allow coupling with DMABiI via an interfacial Mo–S–Bi linkage. The as-obtained heterostructures were found to show an improved visible-light-driven photocatalytic hydrogen evolution in hydroiodic acid splitting under mild conditions reaching a superior hydrogen evolution rate of around 750 µmol g h and an apparent quantum efficiency (AQE) of 13.0 % at 420 nm. The high activity was kept after a long-term performance test for 3 days.","PeriodicalId":516528,"journal":{"name":"Applied Catalysis B: Environment and Energy","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141943032","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信