Amol R. Jadhav, Xinghui Liu, P. Silambarasan, Vinit Kanade, Yang Liu, Ta Thi Thuy Nga, Taehun Yang, My Tran Kim, Yeonsu Han, Taesung Kim, Xiaodong Shao, Chunyi Zhi, Chung-Li Dong, Hyoyoung Lee
{"title":"Stable and efficient chlorine evolution reaction with atomically dispersed Ru on surface tensile strained TiO2","authors":"Amol R. Jadhav, Xinghui Liu, P. Silambarasan, Vinit Kanade, Yang Liu, Ta Thi Thuy Nga, Taehun Yang, My Tran Kim, Yeonsu Han, Taesung Kim, Xiaodong Shao, Chunyi Zhi, Chung-Li Dong, Hyoyoung Lee","doi":"10.1016/j.apcatb.2024.124456","DOIUrl":null,"url":null,"abstract":"Developing highly efficient and selective electrocatalysts for the chlorine evolution reaction (CER) in the chloralkali industry is of great importance. Here, we report the discovery of a new electrocatalyst for CER consisting of atomically dispersed Ru sites on surface tensile strained TiO (Ru-S-TiO). The single-atom Ru species were stabilized on the strained TiO surface by strong metal-support interactions. The Ru-S-TiO is highly efficient, initiating CER at only 5 mV above the E, and has shown excellent stability for over 100 hours. It exhibited >95 % CER selectivity even in acidic media with low Cl concentrations (0.2 M). Our results demonstrate that the strong metal-support interactions between the atomically dispersed Ru species and the strained TiO surface are crucial for the high catalytic activity, selectivity, and stability of Ru-S-TiO for CER. Ru-S-TiO holds great promise as a viable alternative to existing mixed metal oxides-based electrocatalysts for CER in the chloralkali industry.","PeriodicalId":516528,"journal":{"name":"Applied Catalysis B: Environment and Energy","volume":"26 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Catalysis B: Environment and Energy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.apcatb.2024.124456","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Developing highly efficient and selective electrocatalysts for the chlorine evolution reaction (CER) in the chloralkali industry is of great importance. Here, we report the discovery of a new electrocatalyst for CER consisting of atomically dispersed Ru sites on surface tensile strained TiO (Ru-S-TiO). The single-atom Ru species were stabilized on the strained TiO surface by strong metal-support interactions. The Ru-S-TiO is highly efficient, initiating CER at only 5 mV above the E, and has shown excellent stability for over 100 hours. It exhibited >95 % CER selectivity even in acidic media with low Cl concentrations (0.2 M). Our results demonstrate that the strong metal-support interactions between the atomically dispersed Ru species and the strained TiO surface are crucial for the high catalytic activity, selectivity, and stability of Ru-S-TiO for CER. Ru-S-TiO holds great promise as a viable alternative to existing mixed metal oxides-based electrocatalysts for CER in the chloralkali industry.