Applied Catalysis B: Environment and Energy最新文献

筛选
英文 中文
Enhanced photocatalytic performance of 0.1Bi-MIL-101-NH2 after phosphorus adsorption: Synergistic effect of adsorption and photocatalysis 吸附磷后 0.1Bi-MIL-101-NH2 的光催化性能增强:吸附与光催化的协同效应
Applied Catalysis B: Environment and Energy Pub Date : 2024-08-08 DOI: 10.1016/j.apcatb.2024.124487
Yinghao Li, Ying Li, Qinglong Meng, Ke Jing, Jingyi Zhang, Qingyu Guan
{"title":"Enhanced photocatalytic performance of 0.1Bi-MIL-101-NH2 after phosphorus adsorption: Synergistic effect of adsorption and photocatalysis","authors":"Yinghao Li, Ying Li, Qinglong Meng, Ke Jing, Jingyi Zhang, Qingyu Guan","doi":"10.1016/j.apcatb.2024.124487","DOIUrl":"https://doi.org/10.1016/j.apcatb.2024.124487","url":null,"abstract":"Achieving efficient phosphorus recovery and reuse from wastewater presents formidable challenges. In this study, a synergistic adsorption photocatalysis process was successfully constructed. 0.1Bi-MIL-101-NH showed the maximum phosphorus adsorption performance of 112 mg/g. After phosphorus adsorption, photoelectrochemical measurements confirmed that the photoelectric properties of the 0.1Bi-MIL-101-NH-P sample was improved, and the degradation efficiency of SMX was increased by 20 % within 120 min. Meanwhile, the mineralization rate reached 91 %. The incorporation of Bi significantly enhanced the adsorption energy of the 0.1Bi-MIL-101-NH sample. Notably, the presence of phosphorus on the surface of 0.1Bi-MIL-101-NH-P enhanced the adsorption of water molecules by the material, thereby augmenting the generation of •OH. •O and •OH played dominant roles in the photodegradation of SMX. Finally, the degradation pathways of intermediates were further studied by Density functional theory (DFT) calculations and LC-MS analysis. This study provides a new avenue for phosphorus recovery and organic pollutant degradation.","PeriodicalId":516528,"journal":{"name":"Applied Catalysis B: Environment and Energy","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141943246","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Unraveling degradation mechanism and reaction efficacy of sulfamethoxazole via reactive oxygen species dominated radical process 通过活性氧主导的自由基过程揭示磺胺甲噁唑的降解机理和反应功效
Applied Catalysis B: Environment and Energy Pub Date : 2024-08-08 DOI: 10.1016/j.apcatb.2024.124484
Hongguo Zhang, Peitong Cen, Jiashuo Li, Chenxi Li, Jiayu Song, Qiong Wu, Wei Han, Lei Huang, Jia Yan, Shaoqi Zhou, Ce-Hui Mo, Meng Li
{"title":"Unraveling degradation mechanism and reaction efficacy of sulfamethoxazole via reactive oxygen species dominated radical process","authors":"Hongguo Zhang, Peitong Cen, Jiashuo Li, Chenxi Li, Jiayu Song, Qiong Wu, Wei Han, Lei Huang, Jia Yan, Shaoqi Zhou, Ce-Hui Mo, Meng Li","doi":"10.1016/j.apcatb.2024.124484","DOIUrl":"https://doi.org/10.1016/j.apcatb.2024.124484","url":null,"abstract":"Herein, the TiO electrode was combined for the first time with various oxidants to generate reactive oxygen species for the removal of different organic pollutants in an electrochemical oxidation (EO) system. The removal efficiency of organic pollutants, reaction mechanism, and degradation pathway were evaluated by electrochemical tests, reaction kinetics, electron paramagnetic resonance, quantum chemical, and density functional theory calculations. As a result, nearly 100 % removal efficiency of sulfamethoxazole (SMX) was achieved within 12 min with a high kinetic rate constant of 0.259 min, and the kinetic rate constant was strongly dependent on the electrostatic potential. The O2 site on the peroxymonosulfate (PMS) molecule dominated the radical generation for the removal of SMX via the radical and non−radical process. This current study offers a novel approach toward the electrochemical activation of PMS in the elimination and degradation of various organic pollutant from wastewater.","PeriodicalId":516528,"journal":{"name":"Applied Catalysis B: Environment and Energy","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141943247","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Enhanced CO2 electroreduction to C2+ production on asymmetric Zn-O-Cu sites via tuning of *CO intermediate adsorption 通过调整 *CO 中间吸附,增强不对称 Zn-O-Cu 位点上 CO2 电还原至 C2+ 的生成
Applied Catalysis B: Environment and Energy Pub Date : 2024-08-08 DOI: 10.1016/j.apcatb.2024.124473
Zijian Fang, Weiwei Guo, Guixian Xie, Guoliang Mei, Yanling Zhai, Zhijun Zhu, Xiaoquan Lu, Jianguo Tang
{"title":"Enhanced CO2 electroreduction to C2+ production on asymmetric Zn-O-Cu sites via tuning of *CO intermediate adsorption","authors":"Zijian Fang, Weiwei Guo, Guixian Xie, Guoliang Mei, Yanling Zhai, Zhijun Zhu, Xiaoquan Lu, Jianguo Tang","doi":"10.1016/j.apcatb.2024.124473","DOIUrl":"https://doi.org/10.1016/j.apcatb.2024.124473","url":null,"abstract":"The electrochemical CO reduction reaction conducted presents a promising strategy to facilitate the artificial carbon cycle. Unfortunately, the efficiency of eCORR-to-C remains below the level required for large-scale implementation due to complex multi-electron transfer and sluggish carbon-carbon coupling. Herein, we constructed asymmetric Zn-O-Cu sites on 2.12 %Zn/CuO, which achieving a maximum C product FE of 78.77 ± 1.90 % and a high current density of 408.3 mA cm. Experimental and theoretical studies reveal that the O-bridged asymmetric Zn-O-Cu sites exhibit enhanced electron transfer, which plays a pivotal role in improving the coverage of *CO and adjusting the adsorption strength of the *CO. The optimal adsorption capacity of the *CO on 2.12 %Zn/CuO facilitated the subsequent hydrogenation reaction to enhance the conversion of *CO to *COH. Consequently, the asymmetric Zn-O-Cu sites proved to be more thermodynamically favorable for the asymmetric coupling between *CO and *COH, which is conducive to the production of C products.","PeriodicalId":516528,"journal":{"name":"Applied Catalysis B: Environment and Energy","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141943249","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Enhanced treatment of high chloride organic wastewater under lower peroxymonosulfate consumption: A pathway for the formation of Fe(IV)=O excited by chloride ions 在降低过一硫酸盐消耗量的情况下加强对高氯化物有机废水的处理:氯离子激发的 Fe(IV)=O 的形成途径
Applied Catalysis B: Environment and Energy Pub Date : 2024-08-08 DOI: 10.1016/j.apcatb.2024.124471
Xianjing Liu, Ying Wang, John Crittenden, Qi Su, Huatao Mo
{"title":"Enhanced treatment of high chloride organic wastewater under lower peroxymonosulfate consumption: A pathway for the formation of Fe(IV)=O excited by chloride ions","authors":"Xianjing Liu, Ying Wang, John Crittenden, Qi Su, Huatao Mo","doi":"10.1016/j.apcatb.2024.124471","DOIUrl":"https://doi.org/10.1016/j.apcatb.2024.124471","url":null,"abstract":"The inhibition of oxidation efficiency and the formation of toxic chlorinated organic byproducts owing to Cl still represent a significant threat to the treatment of high chloride organic wastewater using advanced oxidation processes. This study explores new pathways for utilizing Cl to promote the formation of Fe(Ⅳ)=O by single atom Fe-CNs catalysts under peroxymonosulfate (PMS) system, which significantly increases sulfamethoxazole (SMX) degradation rate constant by 2.97 times, enhances PMS utilization efficiency (reducing by 92 % PMS consumption) and simultaneously avoids the formation of chlorinated organic byproducts. Experiments and theoretical calculation revealed that the in-situ generated HClO (generated via the reaction of PMS and Cl) more easily reacts with Fe–pyridinic N active sites of Fe-CNs catalysts to generate Fe(Ⅳ)=O through a lower-energy-barrier pathway, rather than directly oxidates pollutants. This study provides an approach to utilize omnipresent Cl achieving high efficiency, high selectivity, low PMS consumption and harmless treatment for chloride-containing organic wastewaters.","PeriodicalId":516528,"journal":{"name":"Applied Catalysis B: Environment and Energy","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141943250","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A novel palladium decorated graphdiyne regulating d band center enhanced the ability of square meter scale and coal chemical wastewater for efficient hydrogen production 新型钯装饰石墨二炔调节 d 波段中心增强了平方米级和煤化工废水高效制氢的能力
Applied Catalysis B: Environment and Energy Pub Date : 2024-08-08 DOI: 10.1016/j.apcatb.2024.124488
Jingzhi Wang, Mei Li, Youlin Wu, Nini Zhao, Zhiliang Jin
{"title":"A novel palladium decorated graphdiyne regulating d band center enhanced the ability of square meter scale and coal chemical wastewater for efficient hydrogen production","authors":"Jingzhi Wang, Mei Li, Youlin Wu, Nini Zhao, Zhiliang Jin","doi":"10.1016/j.apcatb.2024.124488","DOIUrl":"https://doi.org/10.1016/j.apcatb.2024.124488","url":null,"abstract":"The large amount of organic wastewater generated by the coal chemical industry requires multiple processes to remove harmful substances, which is costly. Based on this, palladium-modified GDY (Pd-GDY) was prepared for the first time, using acetylene gas generated from carbide slag as a precursor. And grow CdS on its surface to form Pd-GDY/CdS heterostructure material. The photocatalytic performance in coal chemical wastewater can reach 7.35 μmol·g·h. Meanwhile, in the industrial hydrogen production experiment on a square meter scale, the hydrogen production rate reached 3.42 mmol·h. Density functional theory (DFT) calculations indicate that the excellent hydrogen evolution activity is attributed to the regulation of the d band center by Pd-GDY. More antibonding energy bands are below the Fermi level, filled with electrons, reducing bond stability and adsorption strength, resulting in a decrease in hydrogen adsorption free energy. Overall, this work provides new insights into the synthesis of novel graphdiyne and its application in wastewater and industrial hydrogen production based on regulating d band center in heterogeneous catalytic systems.","PeriodicalId":516528,"journal":{"name":"Applied Catalysis B: Environment and Energy","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141969302","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Temporal analysis of products (TAP) reactor study of the dynamics of CO2 interaction with a Ru/γ-Al2O3 supported catalyst II: Interaction strength, formation of intermediates and oxygen exchange 对二氧化碳与 Ru/γ-Al2O3 支承催化剂相互作用动力学的产品时相分析(TAP)反应器研究 II:相互作用强度、中间产物的形成和氧交换
Applied Catalysis B: Environment and Energy Pub Date : 2024-08-06 DOI: 10.1016/j.apcatb.2024.124460
Corinna Fauth, Ali M. Abdel-Mageed, R.Jürgen Behm
{"title":"Temporal analysis of products (TAP) reactor study of the dynamics of CO2 interaction with a Ru/γ-Al2O3 supported catalyst II: Interaction strength, formation of intermediates and oxygen exchange","authors":"Corinna Fauth, Ali M. Abdel-Mageed, R.Jürgen Behm","doi":"10.1016/j.apcatb.2024.124460","DOIUrl":"https://doi.org/10.1016/j.apcatb.2024.124460","url":null,"abstract":"Continuing a comprehensive study of the reduction of CO over supported Ru catalysts, we explored the interaction of CO with Ru/γ-AlO by TAP reactor measurements, focusing on dynamic aspects in adsorption/desorption, reaction and oxygen exchange processes. Pulse shape analysis in H/CO multipulse sequences provides information on the interaction of reactant/product species with the catalyst. The measurements provide information on the dynamic build-up of reaction intermediates and more stable adspecies during pulsing, and its relation to CH formation. Facile oxygen exchange between CO and catalyst, followed by isotope labeling experiments, is quantitatively reconciled in a simple model, relating the ratio between different CO isotopologues to the O:O ratio in the total exchangeable oxygen on the surface and in the CO pulse. The results provide detailed insight into various aspects of the interaction between CO and Ru/AlO catalysts important for a mechanistic understanding of various catalytic reactions involving CO.","PeriodicalId":516528,"journal":{"name":"Applied Catalysis B: Environment and Energy","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141943254","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Trio strategy of harmonizing electronic structure, interface, and microenvironment on amorphous indium oxide nanofiber for selective electrochemical ammonia synthesis 协调非晶氧化铟纳米纤维电子结构、界面和微环境的三重奏策略,用于选择性电化学氨合成
Applied Catalysis B: Environment and Energy Pub Date : 2024-08-06 DOI: 10.1016/j.apcatb.2024.124466
Siyu Qiang, Hualei Liu, Fan Wu, Shuyu Liu, Sijuan Zeng, Yihe Yin, Fei Wang, Jianyong Yu, Yi-Tao Liu, Bin Ding
{"title":"Trio strategy of harmonizing electronic structure, interface, and microenvironment on amorphous indium oxide nanofiber for selective electrochemical ammonia synthesis","authors":"Siyu Qiang, Hualei Liu, Fan Wu, Shuyu Liu, Sijuan Zeng, Yihe Yin, Fei Wang, Jianyong Yu, Yi-Tao Liu, Bin Ding","doi":"10.1016/j.apcatb.2024.124466","DOIUrl":"https://doi.org/10.1016/j.apcatb.2024.124466","url":null,"abstract":"Suppressing parasitic hydrogen evolution reaction (HER) remains a dilemma in developing aqueous electrochemical nitrogen reduction reaction (NRR). Nevertheless, previous studies have revealed the significant challenge of relying solely on electrocatalyst design to pursue selective NRR. Herein, we present a ‘Trio’ strategy to harmonize electronic structures of electrocatalysts, properties of interfaces, and configurations of microenvironments, thereby governing the intricate proton behaviors throughout the reaction, to suppress HER while boosting NRR. As proof-of-concept demonstration, the first designed amorphous InO-based nanofiber electrocatalyst, with optimized electronic state by oxygen vacancy and anchoring Mo species, is in conjunction with low-surface-energy monolayer interface and molecular-crowding microenvironment. Such rational synergy creates an advantageous catalytic configuration with decelerated proton diffusion and restricted proton transfer to active sites, thus achieving NH yield of 59.72 μg h mg and a FE of 30.60 %. We expect these findings will inspire “collaborative combat” strategies and desirable systems of NRR in the future.","PeriodicalId":516528,"journal":{"name":"Applied Catalysis B: Environment and Energy","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141943253","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Regulating local polarization in hollow multi-shelled nanospheres for efficient atomic site activation towards selective aerobic oxidation of aromatic alcohols 调节中空多壳纳米球的局部极化,实现原子位点的高效活化,从而实现芳香醇的选择性有氧氧化
Applied Catalysis B: Environment and Energy Pub Date : 2024-08-06 DOI: 10.1016/j.apcatb.2024.124481
Danjun Mao, Tong Li, Xiufeng Lu, Tao Guo, Huan He, Heyun Fu, Zheyang Liu, Shourong Zheng, Cheng Sun, Zhaoyi Xu, Zhifeng Jiang, Xiaolei Qu
{"title":"Regulating local polarization in hollow multi-shelled nanospheres for efficient atomic site activation towards selective aerobic oxidation of aromatic alcohols","authors":"Danjun Mao, Tong Li, Xiufeng Lu, Tao Guo, Huan He, Heyun Fu, Zheyang Liu, Shourong Zheng, Cheng Sun, Zhaoyi Xu, Zhifeng Jiang, Xiaolei Qu","doi":"10.1016/j.apcatb.2024.124481","DOIUrl":"https://doi.org/10.1016/j.apcatb.2024.124481","url":null,"abstract":"Light-driven selective organic synthesis presents a promising means to sustainable production of value-added fine chemicals. Nonetheless, the photocatalytic efficiency is obstructed by low charge transfer efficiency and few uncoordinated electrons. Herein, hollow multi-shelled PbBiOBr nanospheres with atomically thin shells and richly local polarization sites were initially synthesized to effectively tackle these issues. The ultrathin hollow multi-shelled geometry facilitates charge separation and offers spatially distributed catalytic sites for redox reactions. The local polarization induced by oxygen vacancies can afford abundant coordination-unsaturated sites, effectively facilitate the activation of O and benzyl alcohol, significantly lower free energy barrier through the formation of stable Pb−O−Bi intermediate. Consequently, the richly polarized PbBiOBr hollow multi-shelled nanospheres exhibit excellent catalytic activity (96 % conversion and 99 % selectivity) and superior adaptability for selective oxidation of aromatic alcohols to aldehydes. The results can motivate the study on hollow multi-shelled geometry with local polarization for fine chemicals photosynthesis.","PeriodicalId":516528,"journal":{"name":"Applied Catalysis B: Environment and Energy","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141943251","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Constructing electron-enriched Co tetrahedral sites to promote oxygen electrocatalysis in rechargeable zinc-air batteries 构建电子富集的 Co 四面体位点,促进可充电锌-空气电池中的氧电催化作用
Applied Catalysis B: Environment and Energy Pub Date : 2024-08-04 DOI: 10.1016/j.apcatb.2024.124468
Jingrui Han, Jieshu Zhou, Wei Song, Hao Zhang, Ziyun Wang, Kangning Liu, Yong Li, Weijun Zhu, Xuhui Sun, Hongyan Liang
{"title":"Constructing electron-enriched Co tetrahedral sites to promote oxygen electrocatalysis in rechargeable zinc-air batteries","authors":"Jingrui Han, Jieshu Zhou, Wei Song, Hao Zhang, Ziyun Wang, Kangning Liu, Yong Li, Weijun Zhu, Xuhui Sun, Hongyan Liang","doi":"10.1016/j.apcatb.2024.124468","DOIUrl":"https://doi.org/10.1016/j.apcatb.2024.124468","url":null,"abstract":"The oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) is a key performance-limiting step of rechargeable zinc-air batteries. Developing a reliable strategy to optimize the activity of Co occupied the tetrahedral site (Co) is crucial for enhancing electrocatalytic performance and still needs further elaborate elucidation. Here, Mo dopants were used as electron donors to construct low-valence Co sites in cobalt phosphide, resulting in downshifted -band centers and strengthened hybridization between Co 3 and P 3 orbitals. The negative charges are easier to accumulate on three antibonding orbitals of Co, promoting the desorption of oxygen intermediates, as evidenced using density functional theory calculations and spectroscopic investigations. The optimal catalyst delivers impressive ORR and OER performance, in terms of half-wave potential of 0.84 V for ORR and overpotential of 247 mV for OER. In general, this work opens a new opportunity to rationally regulate electronic structure of Co sites introducing an electron donor, as well as provides guidance for exploring electronic descriptors of tetrahedral sites.","PeriodicalId":516528,"journal":{"name":"Applied Catalysis B: Environment and Energy","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141943014","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Surface Mn-O3* complex-mediated nonradical electron transfer for boosting catalytic ozonation of organic pollutants 表面 Mn-O3* 复合物介导的非辐射电子转移可促进有机污染物的催化臭氧处理
Applied Catalysis B: Environment and Energy Pub Date : 2024-08-02 DOI: 10.1016/j.apcatb.2024.124463
Tian Tian, Peixin Zhu, Chun He, Ya Xiong, Jingyun Fang, Shuanghong Tian
{"title":"Surface Mn-O3* complex-mediated nonradical electron transfer for boosting catalytic ozonation of organic pollutants","authors":"Tian Tian, Peixin Zhu, Chun He, Ya Xiong, Jingyun Fang, Shuanghong Tian","doi":"10.1016/j.apcatb.2024.124463","DOIUrl":"https://doi.org/10.1016/j.apcatb.2024.124463","url":null,"abstract":"As initial and important reactive species, surface O complexes are rarely investigated in catalytic ozonation, which might be one cause of dispute in mechanistic understanding. Herein, In-situ DRIFTS and premixing-standing experiments confirmed the generation of long-lived Mn-O* complexes upon O adsorption on surface Lewis acid sites of α-MnO. In α-MnO/O system, the oxidation rate of various pollutants showed a good linear correlation with their redox potentials, as well as the energy gap between the pollutants and Mn-O* complexes. Joint catalytic mechanism experiments and density functional theory calculations revealed that the oxidation of pollutants was boosted mainly because there was fast nonradical intermolecular electron transfer from the HOMO of pollutants to the LUMO of Mn-O* complexes. This study illustrates the significance of surface Mn-O* complex in catalytic ozonation and discloses an efficient nonradical catalytic ozonation process that is resistant to pH fluctuation and matrix interference.","PeriodicalId":516528,"journal":{"name":"Applied Catalysis B: Environment and Energy","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141943024","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信