协调非晶氧化铟纳米纤维电子结构、界面和微环境的三重奏策略,用于选择性电化学氨合成

Siyu Qiang, Hualei Liu, Fan Wu, Shuyu Liu, Sijuan Zeng, Yihe Yin, Fei Wang, Jianyong Yu, Yi-Tao Liu, Bin Ding
{"title":"协调非晶氧化铟纳米纤维电子结构、界面和微环境的三重奏策略,用于选择性电化学氨合成","authors":"Siyu Qiang, Hualei Liu, Fan Wu, Shuyu Liu, Sijuan Zeng, Yihe Yin, Fei Wang, Jianyong Yu, Yi-Tao Liu, Bin Ding","doi":"10.1016/j.apcatb.2024.124466","DOIUrl":null,"url":null,"abstract":"Suppressing parasitic hydrogen evolution reaction (HER) remains a dilemma in developing aqueous electrochemical nitrogen reduction reaction (NRR). Nevertheless, previous studies have revealed the significant challenge of relying solely on electrocatalyst design to pursue selective NRR. Herein, we present a ‘Trio’ strategy to harmonize electronic structures of electrocatalysts, properties of interfaces, and configurations of microenvironments, thereby governing the intricate proton behaviors throughout the reaction, to suppress HER while boosting NRR. As proof-of-concept demonstration, the first designed amorphous InO-based nanofiber electrocatalyst, with optimized electronic state by oxygen vacancy and anchoring Mo species, is in conjunction with low-surface-energy monolayer interface and molecular-crowding microenvironment. Such rational synergy creates an advantageous catalytic configuration with decelerated proton diffusion and restricted proton transfer to active sites, thus achieving NH yield of 59.72 μg h mg and a FE of 30.60 %. We expect these findings will inspire “collaborative combat” strategies and desirable systems of NRR in the future.","PeriodicalId":516528,"journal":{"name":"Applied Catalysis B: Environment and Energy","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Trio strategy of harmonizing electronic structure, interface, and microenvironment on amorphous indium oxide nanofiber for selective electrochemical ammonia synthesis\",\"authors\":\"Siyu Qiang, Hualei Liu, Fan Wu, Shuyu Liu, Sijuan Zeng, Yihe Yin, Fei Wang, Jianyong Yu, Yi-Tao Liu, Bin Ding\",\"doi\":\"10.1016/j.apcatb.2024.124466\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Suppressing parasitic hydrogen evolution reaction (HER) remains a dilemma in developing aqueous electrochemical nitrogen reduction reaction (NRR). Nevertheless, previous studies have revealed the significant challenge of relying solely on electrocatalyst design to pursue selective NRR. Herein, we present a ‘Trio’ strategy to harmonize electronic structures of electrocatalysts, properties of interfaces, and configurations of microenvironments, thereby governing the intricate proton behaviors throughout the reaction, to suppress HER while boosting NRR. As proof-of-concept demonstration, the first designed amorphous InO-based nanofiber electrocatalyst, with optimized electronic state by oxygen vacancy and anchoring Mo species, is in conjunction with low-surface-energy monolayer interface and molecular-crowding microenvironment. Such rational synergy creates an advantageous catalytic configuration with decelerated proton diffusion and restricted proton transfer to active sites, thus achieving NH yield of 59.72 μg h mg and a FE of 30.60 %. We expect these findings will inspire “collaborative combat” strategies and desirable systems of NRR in the future.\",\"PeriodicalId\":516528,\"journal\":{\"name\":\"Applied Catalysis B: Environment and Energy\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Catalysis B: Environment and Energy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1016/j.apcatb.2024.124466\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Catalysis B: Environment and Energy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.apcatb.2024.124466","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

抑制寄生氢进化反应(HER)仍然是开发水电化学氮还原反应(NRR)的一个难题。然而,以往的研究表明,仅仅依靠电催化剂设计来实现选择性氮还原反应是一项重大挑战。在此,我们提出了一种 "三重奏 "策略,即协调电催化剂的电子结构、界面特性和微环境配置,从而控制整个反应过程中错综复杂的质子行为,在抑制 HER 的同时提高 NRR。作为概念验证,首次设计的非晶 InO 基纳米纤维电催化剂通过氧空位和锚定 Mo 物种优化了电子状态,并与低表面能单层界面和分子拥挤的微环境相结合。这种合理的协同作用创造了一种有利的催化构型,质子扩散速度减慢,质子向活性位点的转移受到限制,从而实现了 59.72 μg h mg 的 NH 产率和 30.60 % 的 FE。我们期待这些发现将在未来激发 "协同作战 "战略和理想的 NRR 系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Trio strategy of harmonizing electronic structure, interface, and microenvironment on amorphous indium oxide nanofiber for selective electrochemical ammonia synthesis
Suppressing parasitic hydrogen evolution reaction (HER) remains a dilemma in developing aqueous electrochemical nitrogen reduction reaction (NRR). Nevertheless, previous studies have revealed the significant challenge of relying solely on electrocatalyst design to pursue selective NRR. Herein, we present a ‘Trio’ strategy to harmonize electronic structures of electrocatalysts, properties of interfaces, and configurations of microenvironments, thereby governing the intricate proton behaviors throughout the reaction, to suppress HER while boosting NRR. As proof-of-concept demonstration, the first designed amorphous InO-based nanofiber electrocatalyst, with optimized electronic state by oxygen vacancy and anchoring Mo species, is in conjunction with low-surface-energy monolayer interface and molecular-crowding microenvironment. Such rational synergy creates an advantageous catalytic configuration with decelerated proton diffusion and restricted proton transfer to active sites, thus achieving NH yield of 59.72 μg h mg and a FE of 30.60 %. We expect these findings will inspire “collaborative combat” strategies and desirable systems of NRR in the future.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信