Enhanced CO2 electroreduction to C2+ production on asymmetric Zn-O-Cu sites via tuning of *CO intermediate adsorption

Zijian Fang, Weiwei Guo, Guixian Xie, Guoliang Mei, Yanling Zhai, Zhijun Zhu, Xiaoquan Lu, Jianguo Tang
{"title":"Enhanced CO2 electroreduction to C2+ production on asymmetric Zn-O-Cu sites via tuning of *CO intermediate adsorption","authors":"Zijian Fang, Weiwei Guo, Guixian Xie, Guoliang Mei, Yanling Zhai, Zhijun Zhu, Xiaoquan Lu, Jianguo Tang","doi":"10.1016/j.apcatb.2024.124473","DOIUrl":null,"url":null,"abstract":"The electrochemical CO reduction reaction conducted presents a promising strategy to facilitate the artificial carbon cycle. Unfortunately, the efficiency of eCORR-to-C remains below the level required for large-scale implementation due to complex multi-electron transfer and sluggish carbon-carbon coupling. Herein, we constructed asymmetric Zn-O-Cu sites on 2.12 %Zn/CuO, which achieving a maximum C product FE of 78.77 ± 1.90 % and a high current density of 408.3 mA cm. Experimental and theoretical studies reveal that the O-bridged asymmetric Zn-O-Cu sites exhibit enhanced electron transfer, which plays a pivotal role in improving the coverage of *CO and adjusting the adsorption strength of the *CO. The optimal adsorption capacity of the *CO on 2.12 %Zn/CuO facilitated the subsequent hydrogenation reaction to enhance the conversion of *CO to *COH. Consequently, the asymmetric Zn-O-Cu sites proved to be more thermodynamically favorable for the asymmetric coupling between *CO and *COH, which is conducive to the production of C products.","PeriodicalId":516528,"journal":{"name":"Applied Catalysis B: Environment and Energy","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Catalysis B: Environment and Energy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.apcatb.2024.124473","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The electrochemical CO reduction reaction conducted presents a promising strategy to facilitate the artificial carbon cycle. Unfortunately, the efficiency of eCORR-to-C remains below the level required for large-scale implementation due to complex multi-electron transfer and sluggish carbon-carbon coupling. Herein, we constructed asymmetric Zn-O-Cu sites on 2.12 %Zn/CuO, which achieving a maximum C product FE of 78.77 ± 1.90 % and a high current density of 408.3 mA cm. Experimental and theoretical studies reveal that the O-bridged asymmetric Zn-O-Cu sites exhibit enhanced electron transfer, which plays a pivotal role in improving the coverage of *CO and adjusting the adsorption strength of the *CO. The optimal adsorption capacity of the *CO on 2.12 %Zn/CuO facilitated the subsequent hydrogenation reaction to enhance the conversion of *CO to *COH. Consequently, the asymmetric Zn-O-Cu sites proved to be more thermodynamically favorable for the asymmetric coupling between *CO and *COH, which is conducive to the production of C products.
通过调整 *CO 中间吸附,增强不对称 Zn-O-Cu 位点上 CO2 电还原至 C2+ 的生成
电化学一氧化碳还原反应为促进人工碳循环提供了一种前景广阔的策略。遗憾的是,由于复杂的多电子转移和迟缓的碳碳耦合,eCORR-to-C 的效率仍然低于大规模实施所需的水平。在此,我们在 2.12 %Zn/CuO 上构建了不对称 Zn-O-Cu 位点,实现了最大 78.77 ± 1.90 % 的碳产物 FE 和 408.3 mA cm 的高电流密度。实验和理论研究表明,O 桥非对称 Zn-O-Cu 位点具有增强的电子传递能力,在提高*CO 的覆盖率和调节*CO 的吸附强度方面起着关键作用。*CO 在 2.12 %Zn/CuO 上的最佳吸附能力促进了随后的氢化反应,提高了 *CO 向 *COH 的转化。因此,不对称的 Zn-O-Cu 位点被证明在热力学上更有利于 *CO 和 *COH 之间的不对称偶联,从而有利于 C 产物的生成。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信