具有促进 H2 演化和糠醛合成机制的 g-C3N4 纳米球/CdZnS QDs S 型双功能光催化剂

Guotai Sun, Zige Tai, Jianjun Zhang, Bei Cheng, Huogen Yu, Jiaguo Yu
{"title":"具有促进 H2 演化和糠醛合成机制的 g-C3N4 纳米球/CdZnS QDs S 型双功能光催化剂","authors":"Guotai Sun, Zige Tai, Jianjun Zhang, Bei Cheng, Huogen Yu, Jiaguo Yu","doi":"10.1016/j.apcatb.2024.124459","DOIUrl":null,"url":null,"abstract":"Photocatalytic H evolution coupled with organic oxidation could replace the slow four-electron water oxidation and utilize charge carriers to obtain high-valued chemicals. Herein, inorganic CdZnS quantum dots (QDs) are skillfully deposited on g-CN nanospheres to construct an inorganic-polymeric S-scheme heterostructure. The CN-CdZnS photocatalyst presents enhanced light absorption, abundant active sites, and intimate interface contact. The optimized composite exhibits an enhanced H evolution rate of 582.3 μmol/g/h and a furfuryl alcohol (FAL) conversion of 84.2 %. Femtosecond transient absorption (fs-TA) spectroscopy, irradiation X-ray photoelectron spectroscopy (XPS), electron paramagnetic resonance (EPR), and theoretical calculation (DFT) verify the S-scheme mechanism, which promotes charge separation and strengthens carrier redox ability. infrared spectra reveal that FAL is first activated to CHO radical by holes in CdZnS and further oxidized to furfural (FF) with dehydrogenation of its hydroxyl group. This work supplies new insight into designing efficient photocatalysts for H generation and organic synthesis.","PeriodicalId":516528,"journal":{"name":"Applied Catalysis B: Environment and Energy","volume":"17 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bifunctional g-C3N4 nanospheres/CdZnS QDs S-scheme photocatalyst with boosted H2 evolution and furfural synthesis mechanism\",\"authors\":\"Guotai Sun, Zige Tai, Jianjun Zhang, Bei Cheng, Huogen Yu, Jiaguo Yu\",\"doi\":\"10.1016/j.apcatb.2024.124459\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Photocatalytic H evolution coupled with organic oxidation could replace the slow four-electron water oxidation and utilize charge carriers to obtain high-valued chemicals. Herein, inorganic CdZnS quantum dots (QDs) are skillfully deposited on g-CN nanospheres to construct an inorganic-polymeric S-scheme heterostructure. The CN-CdZnS photocatalyst presents enhanced light absorption, abundant active sites, and intimate interface contact. The optimized composite exhibits an enhanced H evolution rate of 582.3 μmol/g/h and a furfuryl alcohol (FAL) conversion of 84.2 %. Femtosecond transient absorption (fs-TA) spectroscopy, irradiation X-ray photoelectron spectroscopy (XPS), electron paramagnetic resonance (EPR), and theoretical calculation (DFT) verify the S-scheme mechanism, which promotes charge separation and strengthens carrier redox ability. infrared spectra reveal that FAL is first activated to CHO radical by holes in CdZnS and further oxidized to furfural (FF) with dehydrogenation of its hydroxyl group. This work supplies new insight into designing efficient photocatalysts for H generation and organic synthesis.\",\"PeriodicalId\":516528,\"journal\":{\"name\":\"Applied Catalysis B: Environment and Energy\",\"volume\":\"17 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Catalysis B: Environment and Energy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1016/j.apcatb.2024.124459\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Catalysis B: Environment and Energy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.apcatb.2024.124459","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

光催化氢进化与有机物氧化相结合,可以取代缓慢的四电子水氧化,并利用电荷载流子获得高价值的化学物质。在这里,无机 CdZnS 量子点(QDs)被巧妙地沉积在 g-CN 纳米球上,从而构建了一种无机聚合物 S 型异质结构。CN-CdZnS 光催化剂具有更强的光吸收能力、丰富的活性位点和亲密的界面接触。优化后的复合材料表现出更高的 H 演化率(582.3 μmol/g/h)和 84.2% 的糠醇(FAL)转化率。飞秒瞬态吸收 (fs-TA) 光谱、辐照 X 射线光电子能谱 (XPS)、电子顺磁共振 (EPR) 和理论计算 (DFT) 验证了促进电荷分离和增强载体氧化还原能力的 S 型机制。这项研究为设计高效的光催化剂用于氢气生成和有机合成提供了新的视角。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Bifunctional g-C3N4 nanospheres/CdZnS QDs S-scheme photocatalyst with boosted H2 evolution and furfural synthesis mechanism
Photocatalytic H evolution coupled with organic oxidation could replace the slow four-electron water oxidation and utilize charge carriers to obtain high-valued chemicals. Herein, inorganic CdZnS quantum dots (QDs) are skillfully deposited on g-CN nanospheres to construct an inorganic-polymeric S-scheme heterostructure. The CN-CdZnS photocatalyst presents enhanced light absorption, abundant active sites, and intimate interface contact. The optimized composite exhibits an enhanced H evolution rate of 582.3 μmol/g/h and a furfuryl alcohol (FAL) conversion of 84.2 %. Femtosecond transient absorption (fs-TA) spectroscopy, irradiation X-ray photoelectron spectroscopy (XPS), electron paramagnetic resonance (EPR), and theoretical calculation (DFT) verify the S-scheme mechanism, which promotes charge separation and strengthens carrier redox ability. infrared spectra reveal that FAL is first activated to CHO radical by holes in CdZnS and further oxidized to furfural (FF) with dehydrogenation of its hydroxyl group. This work supplies new insight into designing efficient photocatalysts for H generation and organic synthesis.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信