Surface hydroxylation engineering to boost oxygen evolution reaction on IrO2/TiO2 for PEM water electrolyzer

Chenlu Yang, Wenhui Ling, Yanping Zhu, Yunxiao Yang, Shu Dong, Chengyu Wu, Zhangrui Wang, Shuai Yang, Jun Li, Guoliang Wang, Yifan Huang, Bo Yang, Qingqing Cheng, Zhi Liu, Hui Yang
{"title":"Surface hydroxylation engineering to boost oxygen evolution reaction on IrO2/TiO2 for PEM water electrolyzer","authors":"Chenlu Yang, Wenhui Ling, Yanping Zhu, Yunxiao Yang, Shu Dong, Chengyu Wu, Zhangrui Wang, Shuai Yang, Jun Li, Guoliang Wang, Yifan Huang, Bo Yang, Qingqing Cheng, Zhi Liu, Hui Yang","doi":"10.1016/j.apcatb.2024.124462","DOIUrl":null,"url":null,"abstract":"Dynamic evolutionary hypervalent Ir species (HVI) plays a decisive role in promoting the catalytic activity towards acidic oxygen evolution reaction (OER) on Ir-based electrocatalysts, but regulating the efficient formation of HVI remains a big challenge. Herein we propose surface hydroxylation engineering to accelerate the formation of HVI along the OER process on the OH-rich IrO/TiO electrocatalyst. In-situ/operando spectroscopies demonstrate that the high concentration OH ligand accelerates the formation of HVI. DFT calculation clarifies that the dynamically evolved HVI benefits to weakening the adsorption free energy and thus boosting the OER kinetics. Differential electrochemical mass spectrometry with O isotope labelling experiment further unveils that the OH ligand directly participates in the OER cycle, facilitating the rapid oxidation of Ir to Ir and the O-O bond formation. PEM water electrolyzer with the optimized IrO/TiO electrocatalyst delivers a low cell voltage of 1.787 V at 2 Acm with an inaccessible low Ir usage of ca. 0.08 g/kW, while maintaining a good stability over 350 h, with an estimated cost of US$0.88 kg of H, much lower than 2026 US-DOE target.","PeriodicalId":516528,"journal":{"name":"Applied Catalysis B: Environment and Energy","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Catalysis B: Environment and Energy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.apcatb.2024.124462","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Dynamic evolutionary hypervalent Ir species (HVI) plays a decisive role in promoting the catalytic activity towards acidic oxygen evolution reaction (OER) on Ir-based electrocatalysts, but regulating the efficient formation of HVI remains a big challenge. Herein we propose surface hydroxylation engineering to accelerate the formation of HVI along the OER process on the OH-rich IrO/TiO electrocatalyst. In-situ/operando spectroscopies demonstrate that the high concentration OH ligand accelerates the formation of HVI. DFT calculation clarifies that the dynamically evolved HVI benefits to weakening the adsorption free energy and thus boosting the OER kinetics. Differential electrochemical mass spectrometry with O isotope labelling experiment further unveils that the OH ligand directly participates in the OER cycle, facilitating the rapid oxidation of Ir to Ir and the O-O bond formation. PEM water electrolyzer with the optimized IrO/TiO electrocatalyst delivers a low cell voltage of 1.787 V at 2 Acm with an inaccessible low Ir usage of ca. 0.08 g/kW, while maintaining a good stability over 350 h, with an estimated cost of US$0.88 kg of H, much lower than 2026 US-DOE target.
通过表面羟化工程促进用于 PEM 水电解槽的 IrO2/TiO2 上的氧进化反应
动态演化的超价 Ir 物种(HVI)在促进 Ir 基电催化剂对酸性氧进化反应(OER)的催化活性方面起着决定性作用,但调节 HVI 的有效形成仍然是一个巨大的挑战。在此,我们提出了表面羟基化工程,以加速富含羟基的 IrO/TiO 电催化剂上 OER 过程中 HVI 的形成。原位/操作光谱证明,高浓度 OH 配体加速了 HVI 的形成。DFT 计算表明,动态演化的 HVI 有利于削弱吸附自由能,从而促进 OER 动力学。差分电化学质谱与 O 同位素标记实验进一步揭示,OH 配体直接参与了 OER 循环,促进了 Ir 快速氧化为 Ir 和 O-O 键的形成。使用优化的 IrO/TiO 电催化剂的 PEM 水电解槽在 2 Acm 时的电池电压低至 1.787 V,Ir 用量低至约 0.08 g/kW,同时在 350 小时内保持良好的稳定性,估计成本为 0.88 美元/千克 H,远低于 2026 年美国能源部的目标。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信