Ternary ordered L10-Pt-Co-Fe intermetallics for efficient ORR catalysis through dissociation pathway

Yuekun Hu, Mingwang Lu, Guanhua Zhang, Xiaowei Zhao, Yan Liu, Xiaojing Yang, Xiaofei Yu, Xinghua Zhang, Zunming Lu, Lanlan Li
{"title":"Ternary ordered L10-Pt-Co-Fe intermetallics for efficient ORR catalysis through dissociation pathway","authors":"Yuekun Hu, Mingwang Lu, Guanhua Zhang, Xiaowei Zhao, Yan Liu, Xiaojing Yang, Xiaofei Yu, Xinghua Zhang, Zunming Lu, Lanlan Li","doi":"10.1016/j.apcatb.2024.124556","DOIUrl":null,"url":null,"abstract":"Developing efficient and durable Pt-based electrocatalysts for oxygen reduction reaction (ORR) is critical for the practical application of fuel cells but still remains challenge at present. Here we successfully synthesized a series of ternary L1-PtCoFe (x=0.33, 0.50 and 0.67) intermetallic nanoparticles (NPs) supported on reduced graphene oxide for ORR catalysis. L1-PtCoFe exhibits the highest mass activity (MA) of 0.93 A mg at 0.9 V (1.82 times the corresponding binary L1-PtCo intermetallics) and minimal activity loss (24.73 % loss in MA) after 30,000 potential cycles. By Density Functional Theory calculations, the excellent performance of ternary L1-PtCoFe can be ascribed to: (1) more efficient electronic structure regulation caused by dual-element driven electron transfer, which leads to more electron accumulation on Pt and weakens the over-binding of oxygen-containing species, (2) the unique two-center bridge pattern of O adsorption over Pt-Fe site leads to ORR proceeding the dissociative mechanism, avoiding the formation of OOH*.","PeriodicalId":516528,"journal":{"name":"Applied Catalysis B: Environment and Energy","volume":"48 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Catalysis B: Environment and Energy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.apcatb.2024.124556","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Developing efficient and durable Pt-based electrocatalysts for oxygen reduction reaction (ORR) is critical for the practical application of fuel cells but still remains challenge at present. Here we successfully synthesized a series of ternary L1-PtCoFe (x=0.33, 0.50 and 0.67) intermetallic nanoparticles (NPs) supported on reduced graphene oxide for ORR catalysis. L1-PtCoFe exhibits the highest mass activity (MA) of 0.93 A mg at 0.9 V (1.82 times the corresponding binary L1-PtCo intermetallics) and minimal activity loss (24.73 % loss in MA) after 30,000 potential cycles. By Density Functional Theory calculations, the excellent performance of ternary L1-PtCoFe can be ascribed to: (1) more efficient electronic structure regulation caused by dual-element driven electron transfer, which leads to more electron accumulation on Pt and weakens the over-binding of oxygen-containing species, (2) the unique two-center bridge pattern of O adsorption over Pt-Fe site leads to ORR proceeding the dissociative mechanism, avoiding the formation of OOH*.
通过解离途径实现高效 ORR 催化的三元有序 L10-Pt-Co-Fe 金属间化合物
开发高效耐用的铂基氧还原反应(ORR)电催化剂对于燃料电池的实际应用至关重要,但目前仍面临挑战。在此,我们成功合成了一系列以还原氧化石墨烯为载体的三元 L1-PtCoFe(x=0.33、0.50 和 0.67)金属间纳米粒子(NPs),用于 ORR 催化。L1-PtCoFe 在 0.9 V 时的质量活性(MA)最高,为 0.93 A mg(是相应的二元 L1-PtCo 金属间化合物的 1.82 倍),并且在 30,000 次电位循环后活性损失最小(MA 损失率为 24.73%)。通过密度泛函理论计算,三元 L1-PtCoFe 的优异性能可归因于以下几点:(1) 双元素驱动的电子转移产生了更有效的电子结构调整,使更多的电子聚集在铂上,削弱了含氧物种的过度结合;(2) 铂-铁位点吸附 O 的独特双中心桥模式导致 ORR 采用解离机制,避免了 OOH* 的形成。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信