Applied Catalysis B: Environment and Energy最新文献

筛选
英文 中文
Hydroxyl-functionalization promoted activity and recovery of ionic liquids in direct dimethyl carbonate synthesis from CO2 羟基官能化促进了二氧化碳直接合成碳酸二甲酯过程中离子液体的活性和回收率
Applied Catalysis B: Environment and Energy Pub Date : 2024-09-02 DOI: 10.1016/j.apcatb.2024.124557
Jiawei Ruan, Lifang Chen, Xinzi Wu, Shaokang Qian, Kunchi Xie, Xiaoyi Zhang, Hongye Cheng, Zhen Song, Zhiwen Qi
{"title":"Hydroxyl-functionalization promoted activity and recovery of ionic liquids in direct dimethyl carbonate synthesis from CO2","authors":"Jiawei Ruan, Lifang Chen, Xinzi Wu, Shaokang Qian, Kunchi Xie, Xiaoyi Zhang, Hongye Cheng, Zhen Song, Zhiwen Qi","doi":"10.1016/j.apcatb.2024.124557","DOIUrl":"https://doi.org/10.1016/j.apcatb.2024.124557","url":null,"abstract":"Direct synthesis of dimethyl carbonate (DMC) from CO is promising for CO utilization, however its efficiency remains far from industrial-scale implementation for lack of customized catalysts. Herein, a hydroxyl-functionalized ionic liquid (HFIL) was developed to enhance catalytic activity, and importantly, to facilitate IL recovery through spontaneous phase separation. A high DMC yield (6.5 g·kg·h) over HFIL was achieved under mild conditions compared to non- hydroxyl IL. Self-diffusion coefficients characterization revealed intensified diffusion of CHOH and HFIL, alongside reduced blockage of active sites after hydroxyl functionalization. Density functional theory calculations elucidated that cation polarization induced by hydroxyl group facilitated the synergistic activation of both substrates and monomethyl carbonate intermediate. The reaction mechanism was further verified through diffuse reflectance infrared Fourier transform spectroscopy and theoretical calculations. The self-separation behavior was demonstrated by molecular dynamics simulations. The deep insights into hydroxyl effects towards direct DMC synthesis provide a pioneering perspective for CO capture and utilization using functionalized ILs.","PeriodicalId":516528,"journal":{"name":"Applied Catalysis B: Environment and Energy","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142226216","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Dry reforming of toluene for syngas production over Ni-based perovskite-type oxides 在镍基过氧化物上干法重整甲苯以生产合成气
Applied Catalysis B: Environment and Energy Pub Date : 2024-08-31 DOI: 10.1016/j.apcatb.2024.124555
Jie Ren, Zeeshan Abbasi, Inam Ullah, Feng Zeng
{"title":"Dry reforming of toluene for syngas production over Ni-based perovskite-type oxides","authors":"Jie Ren, Zeeshan Abbasi, Inam Ullah, Feng Zeng","doi":"10.1016/j.apcatb.2024.124555","DOIUrl":"https://doi.org/10.1016/j.apcatb.2024.124555","url":null,"abstract":"Developing efficient Ni-based catalysts and understanding the mechanism of tar removal are crucial for upgrading biomass gasification technology. Literature has identified the superior performance of Ni-based catalysts in reforming tar model compounds like toluene under a steam atmosphere. In this work, we have synthesized LaCeNiO catalysts and examined their activity with benchmark ABO-type perovskites in dry reforming of toluene (DRT). Catalytic experiments revealed that LaCeNiO catalysts exhibited superior activity and stability regarding toluene conversion (85.4%) compared to LaCeNiO. The structural study, conducted through various techniques, highlighted the easier reducibility of Ni from the ABO perovskite lattice, leaving higher oxygen vacancies, and higher basicity for reactant adsorption in DRT. Besides, DRIFTS experiments confirmed the *CHO-participated pathway of syngas generation from DRT. The findings suggested potential pathways for designing catalysts to support biomass gasification while contributing to global carbon reduction.","PeriodicalId":516528,"journal":{"name":"Applied Catalysis B: Environment and Energy","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142205112","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Enhanced low-temperature catalytic activity and stability in methane combustion of Pd−CeO2 nanowires@SiO2 by Pt dispersion 通过铂分散提高 Pd-CeO2 纳米线@SiO2 在甲烷燃烧中的低温催化活性和稳定性
Applied Catalysis B: Environment and Energy Pub Date : 2024-08-30 DOI: 10.1016/j.apcatb.2024.124554
Jinxiong Tao, Hongxia Lin, Jiguang Deng, Yuxi Liu, Lin Jing, Zhiquan Hou, Lu Wei, Zhiwei Wang, Hongxing Dai
{"title":"Enhanced low-temperature catalytic activity and stability in methane combustion of Pd−CeO2 nanowires@SiO2 by Pt dispersion","authors":"Jinxiong Tao, Hongxia Lin, Jiguang Deng, Yuxi Liu, Lin Jing, Zhiquan Hou, Lu Wei, Zhiwei Wang, Hongxing Dai","doi":"10.1016/j.apcatb.2024.124554","DOIUrl":"https://doi.org/10.1016/j.apcatb.2024.124554","url":null,"abstract":"The long-standing contradiction between low-temperature activity and high-temperature stability is one of the difficulties in catalytic combustion of low-concentration methane. The traditional Pd−CeO catalyst system has been applied to the oxidation of methane with low concentrations. However, the problem of sintering at high temperatures still exists. In this work, we prepared the Pt-modified Pd−CeO nanowires (NW) sample (in which the actual Pt, Pd, and Ce contents were 0.12, 0.86, and 9.8 wt%, respectively) using the one-pot reverse-micelle emulsion method. It was found that Pt-Pd−CeONW@SiO showed the highest low-temperature catalytic activity at a space velocity of 20,000 mL/(g h) and the best water resistance and high-temperature stability in the combustion of methane. The and (the temperatures for achieving methane conversions of 50 and 90 %) were 298 and 342 ℃, respectively, methane reaction rate at 270 ℃ was 0.49 μmol/(g s), and turnover frequency (TOF) at 270 °C was 0.198 s over Pt-Pd−CeONW@SiO; whereas over Pd−CeONW@SiO (in which the actual Pd and Ce contents were 0.82 and 10.6 wt%, respectively), the and were 360 and 420 ℃, respectively, methane reaction rate at 270 ℃ was 0.074 μmol/(g s), and TOF at 270 °C was 0.032 s. The introduction of the highly dispersed Pt to Pd−CeONW@SiO could effectively increase the PdO sites of unsaturated coordination through the electron-donating interaction of the Pt with PdO, which played an important role in activating the C−H bonds in methane. In addition, the unique structure of encapsulation also rendered the Pt-Pd−CeONW@SiO sample to possess good water resistance and thermal stability in methane combustion. We are sure that the present work provides a possibility for developing the catalysts with stable catalytic and water-resistant performance at low and high temperatures in the combustion of methane.","PeriodicalId":516528,"journal":{"name":"Applied Catalysis B: Environment and Energy","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142226217","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cerium-optimized platinum-free high-entropy alloy nanoclusters for enhanced ampere-level sustainable hydrogen generation 用于增强安培级可持续制氢的铈优化无铂高熵合金纳米团簇
Applied Catalysis B: Environment and Energy Pub Date : 2024-08-30 DOI: 10.1016/j.apcatb.2024.124529
Yujia Zhang, Kunkun Nie, Binjie Li, Lixin Yi, Chen Hu, Ziyi Wang, Xiaorong Hao, Wenlin Zhang, Zhengqing Liu, Wei Huang
{"title":"Cerium-optimized platinum-free high-entropy alloy nanoclusters for enhanced ampere-level sustainable hydrogen generation","authors":"Yujia Zhang, Kunkun Nie, Binjie Li, Lixin Yi, Chen Hu, Ziyi Wang, Xiaorong Hao, Wenlin Zhang, Zhengqing Liu, Wei Huang","doi":"10.1016/j.apcatb.2024.124529","DOIUrl":"https://doi.org/10.1016/j.apcatb.2024.124529","url":null,"abstract":"The incorporation of rare earth (RE) elements into high-entropy alloys (HEAs) as electrocatalysts for hydrogen evolution reaction (HER) shows great potential in addressing the energy crisis. Here, we successfully synthesized cerium (Ce)-tailored PdCeMoCuRu HEA with chemical homogeneity and stability using a facile wet-chemical synthesis strategy. The obtained PdCeMoCuRu HEA provides abundant active metal sites, resulting in superior HER performance compared to state-of-the-art Pt/C. It only requires 12.8 mV to achieve a current density of 10 mA cm, which is nearly half that required for Pt/C (24.8 mV). Importantly, it exhibits excellent electrocatalytic durability for 100 hours even under a high current density of 1.0 A cm at the ampere level. Density functional theory (DFT) calculations confirm that the introduction of Ce can modify the electronic configuration and generate synergistic effects around Pd, Cu, and Ru active sites. This work establishes a novel approach for designing efficient RE-tailored HEA electrocatalysts.","PeriodicalId":516528,"journal":{"name":"Applied Catalysis B: Environment and Energy","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142205120","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Phosphor-doping modulates the d-band center of Fe atoms in Fe-N4 catalytic sites to boost the activity of oxygen reduction 磷掺杂调节了 Fe-N4 催化位点中铁原子的 d 波段中心,从而提高了氧还原的活性
Applied Catalysis B: Environment and Energy Pub Date : 2024-08-30 DOI: 10.1016/j.apcatb.2024.124553
Yuan Qin, Zihao Ou, Chaozhong Guo, Yao Liu, Rong Jin, Chuanlan Xu, Haifeng Chen, Yujun Si, Honglin Li
{"title":"Phosphor-doping modulates the d-band center of Fe atoms in Fe-N4 catalytic sites to boost the activity of oxygen reduction","authors":"Yuan Qin, Zihao Ou, Chaozhong Guo, Yao Liu, Rong Jin, Chuanlan Xu, Haifeng Chen, Yujun Si, Honglin Li","doi":"10.1016/j.apcatb.2024.124553","DOIUrl":"https://doi.org/10.1016/j.apcatb.2024.124553","url":null,"abstract":"Regulating the electronic structure by phosphor-doping is a preferred strategy to boost the performance of carbon-based catalysts for oxygen reduction reaction (ORR). Here, a porous Fe, P, N-codoped carbon catalyst (PCF-FeTz-900) is designed by a phytic acid-assisted thermal etching strategy, in which P atoms are first doped into the carbon matrix to form a stable PC bond, and then FeN sites are produced from Fe-2,4,6-Tris(2-pyridyl)-s-triazine complex (Fe-TPTz). Theoretical calculations suggest that the electrons are transferred from the doped P atom to the neighboring FeN sites, which facilitates the ORR at the Fe sites by reducing the energy barrier and the adsorption energy of intermediates. Additionally, the P-doped FeN (FeNP) structure manifests a lower free energy difference than that of FeN and the -band center of Fe is also lowered, which further ensures its higher ORR catalytic ability. As a result, the PCF-FeTz-900 catalyst exhibits superior ORR activity and stability in alkaline electrolyte, and the assembled primary zinc-air battery shows greater performances compared to the commercial Pt/C catalyst. This work can provide an effective pathway for modulating the performance of doped-carbon materials in energy conversion devices.","PeriodicalId":516528,"journal":{"name":"Applied Catalysis B: Environment and Energy","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142205114","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Ultra-low temperature selective catalytic reduction of NOx into N2 by micron spherical CeMnOx in high-humidity atmospheres containing SO2 在含有二氧化硫的高湿度大气中,微米球形氧化锰通过超低温选择性催化将氮氧化物还原为 N2
Applied Catalysis B: Environment and Energy Pub Date : 2024-08-30 DOI: 10.1016/j.apcatb.2024.124552
Xixi Chen, Peng Gao, Ling Huang, Yongji Hu, Jianhai Wang, Zonghang Liu, Yuesong Shen
{"title":"Ultra-low temperature selective catalytic reduction of NOx into N2 by micron spherical CeMnOx in high-humidity atmospheres containing SO2","authors":"Xixi Chen, Peng Gao, Ling Huang, Yongji Hu, Jianhai Wang, Zonghang Liu, Yuesong Shen","doi":"10.1016/j.apcatb.2024.124552","DOIUrl":"https://doi.org/10.1016/j.apcatb.2024.124552","url":null,"abstract":"The solvothermal synthesis of optimized micron-sized spherical CeMnO-350 yields remarkable results in ultra-low temperature NH-SCR of NO, with over 91 % NO conversion achieved between 59 and 255 ℃. Notably, under 5 vol% HO and 50 ppm SO, the CeMnO maintains NO conversion >99 % at 127 ℃ for extended periods, surpassing current ultra-low temperature deNO standards. This superior performance is attributed to the material's unique characteristics: the regular and porous surface morphology enhances exposure to active sites, particularly MnO(112) facets crucial for ultra-low temperature deNO, while the rough and loose surface and high MnO(222) exposure mitigate water vapor and SO poisoning. Furthermore, the thermal storage effect of the MnO/MnO system within CeMnO facilitates rapid thermal dissipation and ammonium sulfite decomposition. This process is further augmented by the pores, which aid in the confinement of deNO reaction heat and facilitate the flushing of flowing flue gas, thereby impeding the formation of ammonium bisulfate.","PeriodicalId":516528,"journal":{"name":"Applied Catalysis B: Environment and Energy","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142205118","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Wood-derived continuously oriented channels coupled with tunable built-in electric fields for efficient oxygen evolution 木质连续定向通道与可调内置电场相结合,实现高效氧气进化
Applied Catalysis B: Environment and Energy Pub Date : 2024-08-28 DOI: 10.1016/j.apcatb.2024.124550
Luosong Zheng, Heping Luo, Yuxin Zhong, Wanqian Li, Han Xu, Fuquan Xiong, Jiahao Pi, Yan Qing, Yiqiang Wu
{"title":"Wood-derived continuously oriented channels coupled with tunable built-in electric fields for efficient oxygen evolution","authors":"Luosong Zheng, Heping Luo, Yuxin Zhong, Wanqian Li, Han Xu, Fuquan Xiong, Jiahao Pi, Yan Qing, Yiqiang Wu","doi":"10.1016/j.apcatb.2024.124550","DOIUrl":"https://doi.org/10.1016/j.apcatb.2024.124550","url":null,"abstract":"Interface engineering has emerged as a promising strategy for efficiently enhancing catalytic performance. Herein, we present a built-in electric field (BEF) strategy to assemble CoS/NiS heterojunctions confined in S-doped carbon matrix (SC) and anchored S-doped carbide wood framework (SCW). Leveraging BEF, Co-S-Ni charge transfer channels and the superior mass transfer properties inherent in wood’s unique structure, (CoS/NiS)@SC/SCW exhibits a low overpotential of 220 mV at 50 mA cm, and remarkable stability. The experimental characterizations and theoretical simulation indicate that the constructed BEF can induce the directional transfer of electrons from CoS to NiS, which is beneficial for the adsorption of OH owing to the electrostatic interaction, thereby promotes the formation of the highly active amorphous metal hydroxide oxides at lower OER potentials. This work provides a new perspective for exploring the design of energy storage and conversion catalysts based on renewable wood substrates.","PeriodicalId":516528,"journal":{"name":"Applied Catalysis B: Environment and Energy","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142226218","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Improvement in the activity of Ru/ZrO2 for CO2 methanation by the enhanced hydrophilicity of zirconia 氧化锆亲水性的增强提高了 Ru/ZrO2 对 CO2 甲烷化的活性
Applied Catalysis B: Environment and Energy Pub Date : 2024-08-28 DOI: 10.1016/j.apcatb.2024.124549
Menghui Liu, Rui Zou, Chang-jun Liu
{"title":"Improvement in the activity of Ru/ZrO2 for CO2 methanation by the enhanced hydrophilicity of zirconia","authors":"Menghui Liu, Rui Zou, Chang-jun Liu","doi":"10.1016/j.apcatb.2024.124549","DOIUrl":"https://doi.org/10.1016/j.apcatb.2024.124549","url":null,"abstract":"Increasing interests in the supported Ru catalysts for CO methanation can be recently found in the literature. In this work, we demonstrated that the enhanced surface hydrophilicity of ZrO via air plasma treatment has significant effects on the properties of Ru/ZrO catalyst for CO methanation. At the same CO conversions, the reaction temperature over the catalysts on ZrO with enhanced hydrophilicity is 20–70 °C lower than those on untreated ZrO. The catalyst characterization confirms that the enhanced hydrophilicity leads to more hydroxyl groups and oxygen vacancies on the support, which further promotes CO adsorption and activation, facilitating the conversion of CO to HCO* and HCOO* in formate pathway. The enhanced hydrophilicity also causes a high Ru dispersion with stronger electronic interaction between Ru and ZrO, which forms more interfacial active sites and improves the adsorption and dissociation of H, promoting the linear-CO-Ru adsorption in CO* pathway.","PeriodicalId":516528,"journal":{"name":"Applied Catalysis B: Environment and Energy","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142226219","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Strong electron coupling effect of non-precious metal Schottky junctions enhanced square meter level photocatalytic hydrogen evolution 非贵金属肖特基结的强电子耦合效应增强了平方米级光催化氢进化
Applied Catalysis B: Environment and Energy Pub Date : 2024-08-28 DOI: 10.1016/j.apcatb.2024.124551
Wei Deng, Xuqiang Hao, Jiaqi Yang, Zhiliang Jin
{"title":"Strong electron coupling effect of non-precious metal Schottky junctions enhanced square meter level photocatalytic hydrogen evolution","authors":"Wei Deng, Xuqiang Hao, Jiaqi Yang, Zhiliang Jin","doi":"10.1016/j.apcatb.2024.124551","DOIUrl":"https://doi.org/10.1016/j.apcatb.2024.124551","url":null,"abstract":"Photocatalytic hydrogen production technology utilizes solar energy to decompose water into hydrogen, helping to alleviate the pressure of energy depletion. Engineering of non-precious metal nanomaterials as cocatalysts can play a significant role in low-cost, sustainable, and large-scale photocatalytic hydrogen production. Herein, MnCdS-Vs/NiCoS (MCSN) Schottky junction nanomaterials with strong electron coupling effect were prepared by a two-step hydrothermal method and successfully applied to a square meter hydrogen evolution device. The optimized MCSN material demonstrated high hydrogen evolution activity of 34.28 mmol g h, which is 9.34 and 685.60 times higher than that of pure MnCdS-Vs and NiCoS, respectively. More importantly, in a square meter (1 m) flat-plate reactor, MCSN produced H evolution approximately 201 mmol in 5 h, showcasing its potential for large-scale applications. XPS and DFT calculations demonstrated that MnCdS-V interacts with NiCoS to produce a strong electron coupling effect and form a Schottky junction. It promotes the facilitated the directional migration of photogenerated electrons from MnCdS-Vs to NiCoS, but also effectively suppressed electron backflow through the Schottky barrier. Furthermore, the abundance of sulfur vacancies enhanced visible light absorption capability, further improving photocatalytic hydrogen evolution performance. This work delves into the role of defect engineering and Schottky junction design in enhancing photocatalytic performance, providing new insights into transitioning photocatalytic hydrogen production technologies from small-scale laboratory experiments to large-scale practical applications.","PeriodicalId":516528,"journal":{"name":"Applied Catalysis B: Environment and Energy","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142205135","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Heterogeneous Fe-Ni dual-atom catalysts coupled N-vacancy engineering for enhanced activation of peroxymonosulfate 异质铁-镍双原子催化剂与 N-空位工程相结合,增强过一硫酸盐的活化能力
Applied Catalysis B: Environment and Energy Pub Date : 2024-08-27 DOI: 10.1016/j.apcatb.2024.124538
Jiewen Qin, Qian Wang, Bei Han, Chen Jin, Cuihong Luo, Yunqiang Sun, Zhichao Dai, Shoucui Wang, Hongmei Liu, Xiuwen Zheng, Zunfu Hu
{"title":"Heterogeneous Fe-Ni dual-atom catalysts coupled N-vacancy engineering for enhanced activation of peroxymonosulfate","authors":"Jiewen Qin, Qian Wang, Bei Han, Chen Jin, Cuihong Luo, Yunqiang Sun, Zhichao Dai, Shoucui Wang, Hongmei Liu, Xiuwen Zheng, Zunfu Hu","doi":"10.1016/j.apcatb.2024.124538","DOIUrl":"https://doi.org/10.1016/j.apcatb.2024.124538","url":null,"abstract":"The integration of nitrogen vacancies (Nv) exhibits significant role in promoting the efficiency of single-atom catalysts (SACs). Herein, a novel dual SAC, FeNi-Nv/CN, was developed via immobilizing Fe-Ni dual atoms onto graphitic carbon nitride with Nv sites. The FeNi-Nv/CN could effectively activate peroxymonosulfate (PMS) and generate plentiful reactive oxygen owing to the excellent Fenton-like catalytic property of FeNi, which could facilitate the degradation of Orange II. Moreover, the Nv in FeNi-Nv/CN could augment electron density around Fe-Ni atomic pairs obviously, which was beneficial to strengthen the electron transfer process (ETP) and further improve the degradation efficiency of Orange II. The density functional theory (DFT) calculations and experimental results of FeNi-Nv/CN testified the robust synergistic capacity between dual single-atomic reaction sites and Nv. This work provided a valuable strategy for the construction of dual SAC and could be a promising candidate in the effective degradation of environmental contaminant.","PeriodicalId":516528,"journal":{"name":"Applied Catalysis B: Environment and Energy","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142205117","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信