Wood-derived continuously oriented channels coupled with tunable built-in electric fields for efficient oxygen evolution

Luosong Zheng, Heping Luo, Yuxin Zhong, Wanqian Li, Han Xu, Fuquan Xiong, Jiahao Pi, Yan Qing, Yiqiang Wu
{"title":"Wood-derived continuously oriented channels coupled with tunable built-in electric fields for efficient oxygen evolution","authors":"Luosong Zheng, Heping Luo, Yuxin Zhong, Wanqian Li, Han Xu, Fuquan Xiong, Jiahao Pi, Yan Qing, Yiqiang Wu","doi":"10.1016/j.apcatb.2024.124550","DOIUrl":null,"url":null,"abstract":"Interface engineering has emerged as a promising strategy for efficiently enhancing catalytic performance. Herein, we present a built-in electric field (BEF) strategy to assemble CoS/NiS heterojunctions confined in S-doped carbon matrix (SC) and anchored S-doped carbide wood framework (SCW). Leveraging BEF, Co-S-Ni charge transfer channels and the superior mass transfer properties inherent in wood’s unique structure, (CoS/NiS)@SC/SCW exhibits a low overpotential of 220 mV at 50 mA cm, and remarkable stability. The experimental characterizations and theoretical simulation indicate that the constructed BEF can induce the directional transfer of electrons from CoS to NiS, which is beneficial for the adsorption of OH owing to the electrostatic interaction, thereby promotes the formation of the highly active amorphous metal hydroxide oxides at lower OER potentials. This work provides a new perspective for exploring the design of energy storage and conversion catalysts based on renewable wood substrates.","PeriodicalId":516528,"journal":{"name":"Applied Catalysis B: Environment and Energy","volume":"5 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Catalysis B: Environment and Energy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.apcatb.2024.124550","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Interface engineering has emerged as a promising strategy for efficiently enhancing catalytic performance. Herein, we present a built-in electric field (BEF) strategy to assemble CoS/NiS heterojunctions confined in S-doped carbon matrix (SC) and anchored S-doped carbide wood framework (SCW). Leveraging BEF, Co-S-Ni charge transfer channels and the superior mass transfer properties inherent in wood’s unique structure, (CoS/NiS)@SC/SCW exhibits a low overpotential of 220 mV at 50 mA cm, and remarkable stability. The experimental characterizations and theoretical simulation indicate that the constructed BEF can induce the directional transfer of electrons from CoS to NiS, which is beneficial for the adsorption of OH owing to the electrostatic interaction, thereby promotes the formation of the highly active amorphous metal hydroxide oxides at lower OER potentials. This work provides a new perspective for exploring the design of energy storage and conversion catalysts based on renewable wood substrates.
木质连续定向通道与可调内置电场相结合,实现高效氧气进化
界面工程已成为有效提高催化性能的一种有前途的策略。在此,我们提出了一种内置电场(BEF)策略,用于在掺杂 S 的碳基质(SC)和锚定掺杂 S 的碳化木框架(SCW)中组装 CoS/NiS 异质结。利用 BEF、Co-S-Ni 电荷转移通道和木材独特结构中固有的优异传质特性,(CoS/NiS)@SC/SCW 在 50 mA cm 时具有 220 mV 的低过电位和出色的稳定性。实验表征和理论模拟表明,所构建的 BEF 能诱导电子从 CoS 定向转移到 NiS,由于静电作用,这有利于 OH 的吸附,从而在较低的 OER 电位下促进高活性非晶态金属氢氧化物氧化物的形成。这项工作为探索基于可再生木材基质的能量存储和转换催化剂的设计提供了一个新的视角。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信