Foam-structured Fe catalysts for enhanced heat and mass transfer in synthesis of olefins from syngas

Zhiqiang Zhang, Yu Le, Lei Jing, Gongxun Huang, Jincan Kang, Qinghong Zhang, Ye Wang
{"title":"Foam-structured Fe catalysts for enhanced heat and mass transfer in synthesis of olefins from syngas","authors":"Zhiqiang Zhang, Yu Le, Lei Jing, Gongxun Huang, Jincan Kang, Qinghong Zhang, Ye Wang","doi":"10.1016/j.apcatb.2024.124569","DOIUrl":null,"url":null,"abstract":"The Fischer-Tropsch (FT) synthesis, characterized by its highly exothermic and high-throughput nature, traditionally yields a mix of C hydrocarbons and C1 by-products, which adversely affect carbon utilization efficiency. Herein, we design a Fe-foam structured catalyst to selectively produce high-value olefins in FT process. The Na-Zn-Fe/Fe-foam catalysts are prepared through a hydrothermal synthesis method, where the FeCO precursor is formed from Fe-foam, followed by addition of sodium and zinc modifiers. These catalysts achieve a remarkable olefin selectivity of ∼80 % and a space-time yield of ∼0.70 g g h at a CO conversion of 98 %, and further demonstrate outstanding stability. The structured catalysts, with expansive void volume and fully open network architecture, provide superior mass and heat transfer capabilities, and effectively mitigate the generation of CO and CH, offering a significant advantage in FT synthesis. This work presents a new strategy for the development of efficient catalysts in high exothermic catalytic reactions.","PeriodicalId":516528,"journal":{"name":"Applied Catalysis B: Environment and Energy","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Catalysis B: Environment and Energy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.apcatb.2024.124569","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The Fischer-Tropsch (FT) synthesis, characterized by its highly exothermic and high-throughput nature, traditionally yields a mix of C hydrocarbons and C1 by-products, which adversely affect carbon utilization efficiency. Herein, we design a Fe-foam structured catalyst to selectively produce high-value olefins in FT process. The Na-Zn-Fe/Fe-foam catalysts are prepared through a hydrothermal synthesis method, where the FeCO precursor is formed from Fe-foam, followed by addition of sodium and zinc modifiers. These catalysts achieve a remarkable olefin selectivity of ∼80 % and a space-time yield of ∼0.70 g g h at a CO conversion of 98 %, and further demonstrate outstanding stability. The structured catalysts, with expansive void volume and fully open network architecture, provide superior mass and heat transfer capabilities, and effectively mitigate the generation of CO and CH, offering a significant advantage in FT synthesis. This work presents a new strategy for the development of efficient catalysts in high exothermic catalytic reactions.
在合成气合成烯烃过程中增强传热和传质的泡沫结构铁催化剂
费托合成(FT)具有高放热和高通量的特点,传统上会产生 C 类烃类和 C1 类副产品的混合物,从而对碳的利用效率产生不利影响。在此,我们设计了一种铁泡沫结构催化剂,用于在傅立叶变换工艺中选择性地生产高价值烯烃。Na-Zn-Fe/Fe-foam 催化剂是通过水热合成法制备的,其中 FeCO 前驱体由 Fe-foam 生成,然后加入钠和锌改性剂。在一氧化碳转化率为 98% 的条件下,这些催化剂的烯烃选择性高达 ∼80 %,时空产率达∼0.70 g g h,而且具有出色的稳定性。这种结构催化剂空隙体积大,网络结构完全开放,具有优异的传质和传热能力,能有效减少 CO 和 CH 的生成,在 FT 合成中具有显著优势。这项工作为开发高放热催化反应中的高效催化剂提供了一种新策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信