Vitamins and HormonesPub Date : 2024-01-01Epub Date: 2023-07-12DOI: 10.1016/bs.vh.2023.05.003
Yuan Kang, Karly Laprocina, Huifei Sophia Zheng, Chen-Che Jeff Huang
{"title":"Current insight into the transient X-zone in the adrenal gland cortex.","authors":"Yuan Kang, Karly Laprocina, Huifei Sophia Zheng, Chen-Che Jeff Huang","doi":"10.1016/bs.vh.2023.05.003","DOIUrl":"10.1016/bs.vh.2023.05.003","url":null,"abstract":"<p><p>Mouse models have been widely used in the study of adrenal gland development and diseases. The X-zone is a unique structure of the mouse adrenal gland and lineage-tracing studies show that the X-zone is a remnant of the fetal adrenal cortex. Although the X-zone is considered analogous to the fetal zone in the human adrenal cortex, the functional significance of the X-zone has remained comparatively more obscure. The X-zone forms during the early postnatal stages of adrenal development and regresses later in a remarkable sexually dimorphic fashion. The formation and regression of the X-zone can be different in mice with different genetic backgrounds. Mouse models with gene mutations, hormone/chemical treatments, and/or gonadectomy can also display an aberrant development of the X-zone or alternatively a dysregulated X-zone regression. These models have shed light on the molecular mechanisms regulating the development and regression of these unique adrenocortical cells. This review paper briefly describes the development of the adrenal gland including the formation and regression processes of the X-zone. It also summarizes and lists mouse models that demonstrate different X-zone phenotypes.</p>","PeriodicalId":51209,"journal":{"name":"Vitamins and Hormones","volume":"124 ","pages":"297-339"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11023618/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139974439","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Vitamins and HormonesPub Date : 2024-01-01Epub Date: 2023-07-11DOI: 10.1016/bs.vh.2023.06.007
Knut Tomas Dalen, Yuchuan Li
{"title":"Regulation of lipid droplets and cholesterol metabolism in adrenal cortical cells.","authors":"Knut Tomas Dalen, Yuchuan Li","doi":"10.1016/bs.vh.2023.06.007","DOIUrl":"10.1016/bs.vh.2023.06.007","url":null,"abstract":"<p><p>The adrenal gland is composed of two distinctly different endocrine moieties. The interior medulla consists of neuroendocrine chromaffin cells that secrete catecholamines like adrenaline and noradrenaline, while the exterior cortex consists of steroidogenic cortical cells that produce steroid hormones, such as mineralocorticoids (aldosterone), glucocorticoids (cortisone and cortisol) and androgens. Synthesis of steroid hormones in cortical cells requires substantial amounts of cholesterol, which is the common precursor for steroidogenesis. Cortical cells may acquire cholesterol from de novo synthesis and uptake from circulating low- and high-density lipoprotein particles (LDL and HDL). As cholesterol is part of the plasma membrane in all mammalian cells and an important regulator of membrane fluidity, cellular levels of free cholesterol are tightly regulated. To ensure a robust supply of cholesterol for steroidogenesis and to avoid cholesterol toxicity, cortical cells store large amounts of cholesterol as cholesteryl esters in intracellular lipid droplets. Cortical steroidogenesis relies on both mobilization of cholesterol from lipid droplets and constant uptake of circulating cholesterol to replenish lipid droplet stores. This chapter will describe mechanisms involved in cholesterol uptake, cholesteryl ester synthesis, lipid droplet formation, hydrolysis of stored cholesteryl esters, as well as their impact on steroidogenesis. Additionally, animal models and human diseases characterized by altered cortical cholesteryl ester storage, with or without abnormal steroidogenesis, will be discussed.</p>","PeriodicalId":51209,"journal":{"name":"Vitamins and Hormones","volume":"124 ","pages":"79-136"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139974444","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Vitamins and HormonesPub Date : 2024-01-01Epub Date: 2023-07-18DOI: 10.1016/bs.vh.2023.06.002
Mary Beth Bauer, Kevin P M Currie
{"title":"Serotonin and the serotonin transporter in the adrenal gland.","authors":"Mary Beth Bauer, Kevin P M Currie","doi":"10.1016/bs.vh.2023.06.002","DOIUrl":"10.1016/bs.vh.2023.06.002","url":null,"abstract":"<p><p>The adrenal glands are key components of the mammalian endocrine system, helping maintain physiological homeostasis and the coordinated response to stress. Each adrenal gland has two morphologically and functionally distinct regions, the outer cortex and inner medulla. The cortex is organized into three concentric zones which secrete steroid hormones, including aldosterone and cortisol. Neural crest-derived chromaffin cells in the medulla are innervated by preganglionic sympathetic neurons and secrete catecholamines (epinephrine, norepinephrine) and neuropeptides into the bloodstream, thereby functioning as the neuroendocrine arm of the sympathetic nervous system. In this article we review serotonin (5-HT) and the serotonin transporter (SERT; SLC6A4) in the adrenal gland. In the adrenal cortex, 5-HT, primarily sourced from resident mast cells, acts as a paracrine signal to stimulate aldosterone and cortisol secretion through 5-HT<sub>4</sub>/5-HT<sub>7</sub> receptors. Medullary chromaffin cells contain a small amount of 5-HT due to SERT-mediated uptake and express 5-HT<sub>1A</sub> receptors which inhibit secretion. The atypical mechanism of the 5-HT<sub>1A</sub> receptors and interaction with SERT fine tune this autocrine pathway to control stress-evoked catecholamine secretion. Receptor-independent signaling by SERT/intracellular 5-HT modulates the amount and kinetics of transmitter release from single vesicle fusion events. SERT might also influence stress-evoked upregulation of tyrosine hydroxylase transcription. Transient signaling via 5-HT<sub>3</sub> receptors during embryonic development can limit the number of chromaffin cells found in the mature adrenal gland. Together, this emerging evidence suggests that the adrenal medulla is a peripheral hub for serotonergic control of the sympathoadrenal stress response.</p>","PeriodicalId":51209,"journal":{"name":"Vitamins and Hormones","volume":"124 ","pages":"39-78"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11217909/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139974445","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Beta-caryophyllene in psychiatric and neurological diseases: Role of blood-brain barrier.","authors":"Michele Pereira Mallmann, Mauro Schneider Oliveira","doi":"10.1016/bs.vh.2024.02.004","DOIUrl":"10.1016/bs.vh.2024.02.004","url":null,"abstract":"<p><p>Beta-caryophyllene is an abundant terpene in cannabis, cinnamon, black pepper, cloves, and citrus fruit, delivering a striking, woody-spicy, like cloves and a sweet fruity aroma. Beta-caryophyllene is a Food and Drug Administration-approved food additive with Generally Recognized as Safe status. Interestingly, several biologic activities have been described for beta-caryophyllene, including anti-inflammatory and analgesic effects, neuroprotection against cerebral ischemia and neuronal injury, protection of neurovascular unit against oxidative damage, glial activation and neuroinflammation and anticonvulsant effects. In this chapter, we intend to review the beneficial effects of beta-caryophyllene in the context of psychiatric and neurological diseases. Also, we will analyze the possibility that the blood-brain-barrier may be a central target underlying the beneficial actions of beta-caryophyllene.</p>","PeriodicalId":51209,"journal":{"name":"Vitamins and Hormones","volume":"126 ","pages":"125-168"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141728265","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Vitamins and HormonesPub Date : 2024-01-01Epub Date: 2024-03-30DOI: 10.1016/bs.vh.2024.01.003
Charlotte Delrue, Reinhart Speeckaert, Joris R Delanghe, Marijn M Speeckaert
{"title":"Breath of fresh air: Investigating the link between AGEs, sRAGE, and lung diseases.","authors":"Charlotte Delrue, Reinhart Speeckaert, Joris R Delanghe, Marijn M Speeckaert","doi":"10.1016/bs.vh.2024.01.003","DOIUrl":"10.1016/bs.vh.2024.01.003","url":null,"abstract":"<p><p>Advanced glycation end products (AGEs) are compounds formed via non-enzymatic reactions between reducing sugars and amino acids or proteins. AGEs can accumulate in various tissues and organs and have been implicated in the development and progression of various diseases, including lung diseases. The receptor of advanced glycation end products (RAGE) is a receptor that can bind to advanced AGEs and induce several cellular processes such as inflammation and oxidative stress. Several studies have shown that both AGEs and RAGE play a role in the pathogenesis of lung diseases, such as chronic obstructive pulmonary disease, asthma, idiopathic pulmonary fibrosis, cystic fibrosis, and acute lung injury. Moreover, the soluble form of the receptor for advanced glycation end products (sRAGE) has demonstrated its ability to function as a decoy receptor, possessing beneficial characteristics such as anti-inflammatory, antioxidant, and anti-fibrotic properties. These qualities make it an encouraging focus for therapeutic intervention in managing pulmonary disorders. This review highlights the current understanding of the roles of AGEs and (s)RAGE in pulmonary diseases and their potential as biomarkers and therapeutic targets for preventing and treating these pathologies.</p>","PeriodicalId":51209,"journal":{"name":"Vitamins and Hormones","volume":"125 ","pages":"311-365"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141602139","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Vitamins and HormonesPub Date : 2024-01-01Epub Date: 2024-06-21DOI: 10.1016/bs.vh.2024.06.002
Sauradipta Banerjee
{"title":"Methylglyoxal-induced modification of myoglobin: An insight into glycation mediated protein aggregation.","authors":"Sauradipta Banerjee","doi":"10.1016/bs.vh.2024.06.002","DOIUrl":"10.1016/bs.vh.2024.06.002","url":null,"abstract":"<p><p>Post-translational modification of proteins by Maillard reaction, known as glycation, is thought to be the root cause of different complications, particularly in diabetes mellitus and age-related disorders. Methylglyoxal (MG), a reactive α-oxoaldehyde, increases in diabetic condition and reacts with the proteins to form advanced glycation end products (AGEs) following a Maillard-like reaction. In a time-dependent reaction study of MG with the heme protein myoglobin (Mb), MG was found to induce significant structural alterations of the heme protein, such as heme loss, changes in tryptophan fluorescence, and decrease of α-helicity with increased β-sheet content. These changes were found to occur gradually with increasing period of incubation. Incubation of Mb with MG induced the formation of several AGE adducts, including, carboxyethyllysine at Lys-16, carboxymethyllysine at Lys-87, carboxyethyllysine or pyrraline-carboxymethyllysine at Lys-133, carboxyethyllysine at Lys-42 and hydroimidazolone or argpyrimidine at Arg-31 and Arg-139. MG induced amyloid-like aggregation of Mb was detected at a longer period of incubation. MG-derived AGEs, therefore, appear to have an important role as the precursors of protein aggregation, which, in turn, may be associated with pathophysiological complications.</p>","PeriodicalId":51209,"journal":{"name":"Vitamins and Hormones","volume":"125 ","pages":"31-46"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141602142","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Early life stress, depression and epigenetics.","authors":"Mario F Juruena","doi":"10.1016/bs.vh.2023.01.004","DOIUrl":"https://doi.org/10.1016/bs.vh.2023.01.004","url":null,"abstract":"<p><p>Different factors are essential in increasing the vulnerability to psychiatric disorders, such as genetics. Among these factors, early life stress (ELS), including sexual, physical, emotional abuse, and emotional and physical neglect, enhances the odds of having menial conditions throughout life. Exhaustive research has shown that ELS leads to physiological changes, such as alteration in the HPA axis. During the most critical development period (childhood and adolescence), these changes increase the risk of having child-onset psychiatric disorders. Furthermore, research has suggested a relationship between early life stress and depression, particularly more prolonged episodes of depression with treatment-resistant outcomes. Molecular studies indicate that, in general, the hereditary character of psychiatric disorders is polygenic, multifactorial and highly complex, with innumerable low-effect genetic variants interacting with each other. However, whether there are independent effects among subtypes of ELS remains unclear. This article provides an overview of the interplay of epigenetics, the HPA axis, early life stress and the development of depression. Advances in our knowledge of epigenetics in the context of early life stress and depression provide a new understanding of the genetic influence on psychopathology. Furthermore, they could lead to identifying new targets for clinical intervention.</p>","PeriodicalId":51209,"journal":{"name":"Vitamins and Hormones","volume":"122 ","pages":"307-337"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9694639","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Marco Barchi, Eugenia Guida, Susanna Dolci, Pellegrino Rossi, Paola Grimaldi
{"title":"Endocannabinoid system and epigenetics in spermatogenesis and testicular cancer.","authors":"Marco Barchi, Eugenia Guida, Susanna Dolci, Pellegrino Rossi, Paola Grimaldi","doi":"10.1016/bs.vh.2023.01.002","DOIUrl":"https://doi.org/10.1016/bs.vh.2023.01.002","url":null,"abstract":"<p><p>In mammals, male germ cell development starts during fetal life and is carried out in postnatal life with the formation of sperms. Spermatogenesis is the complex and highly orderly process during which a group of germ stem cells is set at birth, starts to differentiate at puberty. It proceeds through several stages: proliferation, differentiation, and morphogenesis and it is strictly regulated by a complex network of hormonal, autocrine and paracrine factors and it is associated with a unique epigenetic program. Altered epigenetic mechanisms or inability to respond to these factors can impair the correct process of germ development leading to reproductive disorders and/or testicular germ cell cancer. Among factors regulating spermatogenesis an emerging role is played by the endocannabinoid system (ECS). ECS is a complex system comprising endogenous cannabinoids (eCBs), their synthetic and degrading enzymes, and cannabinoid receptors. Mammalian male germ cells have a complete and active ECS which is modulated during spermatogenesis and that crucially regulates processes such as germ cell differentiation and sperm functions. Recently, cannabinoid receptor signaling has been reported to induce epigenetic modifications such as DNA methylation, histone modifications and miRNA expression. Epigenetic modifications may also affect the expression and function of ECS elements, highlighting the establishment of a complex mutual interaction. Here, we describe the developmental origin and differentiation of male germ cells and testicular germ cell tumors (TGCTs) focusing on the interplay between ECS and epigenetic mechanisms involved in these processes.</p>","PeriodicalId":51209,"journal":{"name":"Vitamins and Hormones","volume":"122 ","pages":"75-106"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9694641","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Attila Hunyadi, Orinhamhe G Agbadua, Gábor Takács, Gyorgy T Balogh
{"title":"Scavengome of an antioxidant.","authors":"Attila Hunyadi, Orinhamhe G Agbadua, Gábor Takács, Gyorgy T Balogh","doi":"10.1016/bs.vh.2022.09.003","DOIUrl":"https://doi.org/10.1016/bs.vh.2022.09.003","url":null,"abstract":"<p><p>The term \"scavengome\" refers to the chemical space of all the metabolites that may be formed from an antioxidant upon scavenging reactive oxygen or nitrogen species (ROS/RNS). This chemical space covers a wide variety of free radical metabolites with drug discovery potential. It is very rich in structures representing an increased chemical complexity as compared to the parent antioxidant: a wide range of unusual heterocyclic structures, new CC bonds, etc. may be formed. Further, in a biological environment, this increased chemical complexity is directly translated from the localized conditions of oxidative stress that determines the amounts and types of ROS/RNS present. Biomimetic oxidative chemistry provides an excellent tool to model chemical reactions between antioxidants and ROS/RNS. In this chapter, we provide an overview on the known metabolites obtained by biomimetic oxidation of a few selected natural antioxidants, i.e., a stilbene (resveratrol), a pair of hydroxycinnamates (caffeic acid and methyl caffeate), and a flavonol (quercetin), and discuss the drug discovery perspectives of the related chemical space.</p>","PeriodicalId":51209,"journal":{"name":"Vitamins and Hormones","volume":"121 ","pages":"81-108"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10583178","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Protein l-isoAspartyl Methyltransferase (PIMT) and antioxidants in plants.","authors":"Shraboni Ghosh, Manoj Majee","doi":"10.1016/bs.vh.2022.10.005","DOIUrl":"https://doi.org/10.1016/bs.vh.2022.10.005","url":null,"abstract":"<p><p>All life forms, including plants, accumulate reactive oxygen species (ROS) as a byproduct of metabolism; however, environmental stresses, including abiotic stresses and pathogen attacks, cause enhanced accumulation of ROS in plants. The increased accumulation of ROS often causes oxidative damage to cells. Organisms are able to maintain levels of ROS below permissible limits by several mechanisms, including efficient antioxidant systems. In addition to antioxidant systems, recent studies suggest that protein l-isoaspartyl methyltransferase (PIMT), a highly conserved protein repair enzyme across evolutionary diverse organisms, plays a critical role in maintaining ROS homeostasis by repairing isoaspartyl-mediated damage to antioxidants in plants. Under stress conditions, antioxidant proteins undergo spontaneous isoaspartyl (isoAsp) modification which is often detrimental to protein structure and function. This reduces the catalytic action of antioxidants and disturbs the ROS homeostasis of cells. This chapter focuses on PIMT and its interaction with antioxidants in plants, where PIMT constitutes a secondary level of protection by shielding a primary level of antioxidants from dysfunction and permitting them to guard during unfavorable situations.</p>","PeriodicalId":51209,"journal":{"name":"Vitamins and Hormones","volume":"121 ","pages":"413-432"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10597073","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}