Jakob Körbelin, Adriana Arrulo, Markus Schwaninger
{"title":"针对血脑屏障的基因疗法。","authors":"Jakob Körbelin, Adriana Arrulo, Markus Schwaninger","doi":"10.1016/bs.vh.2024.03.001","DOIUrl":null,"url":null,"abstract":"<p><p>Endothelial cells are the building blocks of vessels in the central nervous system (CNS) and form the blood-brain barrier (BBB). An intact BBB limits permeation of large hydrophilic molecules into the CNS. Thus, the healthy BBB is a major obstacle for the treatment of CNS disorders with antibodies, recombinant proteins or viral vectors. Several strategies have been devised to overcome the barrier. A key principle often consists in attaching the therapeutic compound to a ligand of receptors expressed on the BBB, for example, the transferrin receptor (TfR). The fusion molecule will bind to TfR on the luminal side of brain endothelial cells, pass the endothelial layer by transcytosis and be delivered to the brain parenchyma. However, attempts to endow therapeutic compounds with the ability to cross the BBB can be difficult to implement. An alternative and possibly more straight-forward approach is to produce therapeutic proteins in the endothelial cells that form the barrier. These cells are accessible from blood circulation and have a large interface with the brain parenchyma. They may be an ideal production site for therapeutic protein and afford direct supply to the CNS.</p>","PeriodicalId":51209,"journal":{"name":"Vitamins and Hormones","volume":"126 ","pages":"191-217"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Gene therapy targeting the blood-brain barrier.\",\"authors\":\"Jakob Körbelin, Adriana Arrulo, Markus Schwaninger\",\"doi\":\"10.1016/bs.vh.2024.03.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Endothelial cells are the building blocks of vessels in the central nervous system (CNS) and form the blood-brain barrier (BBB). An intact BBB limits permeation of large hydrophilic molecules into the CNS. Thus, the healthy BBB is a major obstacle for the treatment of CNS disorders with antibodies, recombinant proteins or viral vectors. Several strategies have been devised to overcome the barrier. A key principle often consists in attaching the therapeutic compound to a ligand of receptors expressed on the BBB, for example, the transferrin receptor (TfR). The fusion molecule will bind to TfR on the luminal side of brain endothelial cells, pass the endothelial layer by transcytosis and be delivered to the brain parenchyma. However, attempts to endow therapeutic compounds with the ability to cross the BBB can be difficult to implement. An alternative and possibly more straight-forward approach is to produce therapeutic proteins in the endothelial cells that form the barrier. These cells are accessible from blood circulation and have a large interface with the brain parenchyma. They may be an ideal production site for therapeutic protein and afford direct supply to the CNS.</p>\",\"PeriodicalId\":51209,\"journal\":{\"name\":\"Vitamins and Hormones\",\"volume\":\"126 \",\"pages\":\"191-217\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Vitamins and Hormones\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1016/bs.vh.2024.03.001\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/4/12 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Vitamins and Hormones","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/bs.vh.2024.03.001","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/4/12 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
Endothelial cells are the building blocks of vessels in the central nervous system (CNS) and form the blood-brain barrier (BBB). An intact BBB limits permeation of large hydrophilic molecules into the CNS. Thus, the healthy BBB is a major obstacle for the treatment of CNS disorders with antibodies, recombinant proteins or viral vectors. Several strategies have been devised to overcome the barrier. A key principle often consists in attaching the therapeutic compound to a ligand of receptors expressed on the BBB, for example, the transferrin receptor (TfR). The fusion molecule will bind to TfR on the luminal side of brain endothelial cells, pass the endothelial layer by transcytosis and be delivered to the brain parenchyma. However, attempts to endow therapeutic compounds with the ability to cross the BBB can be difficult to implement. An alternative and possibly more straight-forward approach is to produce therapeutic proteins in the endothelial cells that form the barrier. These cells are accessible from blood circulation and have a large interface with the brain parenchyma. They may be an ideal production site for therapeutic protein and afford direct supply to the CNS.
期刊介绍:
First published in 1943, Vitamins and Hormones is the longest-running serial published by Academic Press. In the early days of the serial, the subjects of vitamins and hormones were quite distinct. The Editorial Board now reflects expertise in the field of hormone action, vitamin action, X-ray crystal structure, physiology, and enzyme mechanisms. Vitamins and Hormones continues to publish cutting-edge reviews of interest to endocrinologists, biochemists, nutritionists, pharmacologists, cell biologists, and molecular biologists. Others interested in the structure and function of biologically active molecules like hormones and vitamins will, as always, turn to this series for comprehensive reviews by leading contributors to this and related disciplines.