{"title":"Relatively functionally countable subsets of products","authors":"Anton E. Lipin","doi":"10.1016/j.topol.2024.109133","DOIUrl":"10.1016/j.topol.2024.109133","url":null,"abstract":"<div><div>A subset <em>A</em> of a topological space <em>X</em> is called <em>relatively functionally countable</em> (<em>RFC</em>) in <em>X</em>, if for each continuous function <span><math><mi>f</mi><mo>:</mo><mi>X</mi><mo>→</mo><mi>R</mi></math></span> the set <span><math><mi>f</mi><mo>[</mo><mi>A</mi><mo>]</mo></math></span> is countable. We prove that all RFC subsets of a product <span><math><munder><mo>∏</mo><mrow><mi>n</mi><mo>∈</mo><mi>ω</mi></mrow></munder><msub><mrow><mi>X</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> are countable, assuming that spaces <span><math><msub><mrow><mi>X</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> are Tychonoff and all RFC subsets of every <span><math><msub><mrow><mi>X</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> are countable. In particular, in a metrizable space every RFC subset is countable.</div><div>The main tool in the proof is the following result: for every Tychonoff space <em>X</em> and any countable set <span><math><mi>Q</mi><mo>⊆</mo><mi>X</mi></math></span> there is a continuous function <span><math><mi>f</mi><mo>:</mo><msup><mrow><mi>X</mi></mrow><mrow><mi>ω</mi></mrow></msup><mo>→</mo><msup><mrow><mi>R</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> such that the restriction of <em>f</em> to <span><math><msup><mrow><mi>Q</mi></mrow><mrow><mi>ω</mi></mrow></msup></math></span> is injective.</div></div>","PeriodicalId":51201,"journal":{"name":"Topology and its Applications","volume":"359 ","pages":"Article 109133"},"PeriodicalIF":0.6,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142654964","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Extendability to Marczewski-Burstin countably representable ideals","authors":"Marta Kwela, Jacek Tryba","doi":"10.1016/j.topol.2024.109134","DOIUrl":"10.1016/j.topol.2024.109134","url":null,"abstract":"<div><div>In the article we consider Marczewski-Burstin countably representable (in short: <span><math><mi>MBC</mi></math></span>) ideals. We propose a concept of extendability to <span><math><mi>MBC</mi></math></span> ideals and provide some of its properties like the fact that it lies between the notions of <em>ω</em>-+-diagonalizability and countable separability. We also answer the question posed in [Topology Appl. 248 (2018), 149–163], by showing that the ideal <span><math><msub><mrow><mi>J</mi></mrow><mrow><mi>c</mi></mrow></msub></math></span> is not <span><math><mi>MBC</mi></math></span>.</div></div>","PeriodicalId":51201,"journal":{"name":"Topology and its Applications","volume":"359 ","pages":"Article 109134"},"PeriodicalIF":0.6,"publicationDate":"2024-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142654965","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"MSNR spaces revisited","authors":"John E. Porter","doi":"10.1016/j.topol.2024.109132","DOIUrl":"10.1016/j.topol.2024.109132","url":null,"abstract":"<div><div>We revisit monotonically semi-neighborhood refining (MSNR) spaces which were introduced by Stares in 1996. MSNR spaces are shown to be lob-spaces with well-ordered (F). The relationships between MSNR spaces with other monotone covering properties are also explored. We show the existence of MSNR spaces that do not posses a monotone locally-finite refining operator and spaces with a monotone locally-finite refining operator that are not MSNR answering a question of Popvassilev and Porter. Compact MSNR spaces may not be metrizable in general, but compact MSNR LOTS are. GO-spaces whose underlying LOTS has a <em>σ</em>-closed-discrete dense subset are shown to have a monotone star-finite refining operator.</div></div>","PeriodicalId":51201,"journal":{"name":"Topology and its Applications","volume":"358 ","pages":"Article 109132"},"PeriodicalIF":0.6,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142656836","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Heng Zhang , Wenfei Xi , Yaoqiang Wu , Hongling Li
{"title":"On Ψω-factorizable groups","authors":"Heng Zhang , Wenfei Xi , Yaoqiang Wu , Hongling Li","doi":"10.1016/j.topol.2024.109129","DOIUrl":"10.1016/j.topol.2024.109129","url":null,"abstract":"<div><div>A topological group <em>G</em> is called <span><math><msub><mrow><mi>Ψ</mi></mrow><mrow><mi>ω</mi></mrow></msub></math></span>-factorizable (resp. <span><math><mi>M</mi></math></span>-factorizable) if every continuous real-valued function on <em>G</em> admits a factorization via a continuous homomorphism onto a topological group <em>H</em> with <span><math><mi>ψ</mi><mo>(</mo><mi>H</mi><mo>)</mo><mo>≤</mo><mi>ω</mi></math></span> (resp. a first-countable group). The first purpose of this article is to discuss some characterizations of <span><math><msub><mrow><mi>Ψ</mi></mrow><mrow><mi>ω</mi></mrow></msub></math></span>-factorizable groups. It is shown that a topological group <em>G</em> is <span><math><msub><mrow><mi>Ψ</mi></mrow><mrow><mi>ω</mi></mrow></msub></math></span>-factorizable if and only if every continuous real-valued function on <em>G</em> is <span><math><msub><mrow><mi>G</mi></mrow><mrow><mi>δ</mi></mrow></msub></math></span>-uniformly continuous, if and only if for every cozero-set <em>U</em> of <em>G</em>, there exists a <span><math><msub><mrow><mi>G</mi></mrow><mrow><mi>δ</mi></mrow></msub></math></span>-subgroup <em>N</em> of <em>G</em> such that <span><math><mi>U</mi><mi>N</mi><mo>=</mo><mi>U</mi></math></span>. Sufficient conditions on the <span><math><msub><mrow><mi>Ψ</mi></mrow><mrow><mi>ω</mi></mrow></msub></math></span>-factorizable group <em>G</em> to be <span><math><mi>M</mi></math></span>-factorizable are that <em>G</em> is <em>τ</em>-fine and <em>τ</em>-steady for a cardinal <em>τ</em>.</div></div>","PeriodicalId":51201,"journal":{"name":"Topology and its Applications","volume":"358 ","pages":"Article 109129"},"PeriodicalIF":0.6,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142656835","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"On the functor of comonotonically maxitive functionals","authors":"Taras Radul","doi":"10.1016/j.topol.2024.109131","DOIUrl":"10.1016/j.topol.2024.109131","url":null,"abstract":"<div><div>We introduce a functor of functionals that preserve the maximum of comonotone functions and the addition of constants. This functor is a subfunctor of the functor of order-preserving functionals and includes the idempotent measure functor as a subfunctor. The main aim of this paper is to demonstrate that this functor is isomorphic to the capacity functor. We establish this isomorphism using the fuzzy max-plus integral. In essence, this result can be viewed as an idempotent analogue of the Riesz Theorem, which establishes a correspondence between the set of <em>σ</em>-additive regular Borel measures and the set of positive linear functionals.</div></div>","PeriodicalId":51201,"journal":{"name":"Topology and its Applications","volume":"358 ","pages":"Article 109131"},"PeriodicalIF":0.6,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142592851","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Some remarks on (a)-characterized subgroups of the circle","authors":"Nikola Bogdanovic","doi":"10.1016/j.topol.2024.109130","DOIUrl":"10.1016/j.topol.2024.109130","url":null,"abstract":"<div><div>In recent years, Barbieri, Dikranjan, Giordano Bruno and Weber have made progress on the problem of determining which characterized subgroups of the circle group are <em>(a-)factorizable</em>, that is, can be written as the sum of two proper (<em>a</em>-)characterized subgroups. We correct an imprecision in one of their results, <span><span>[2, Theorem 5.9]</span></span> from 2017, determining the countable <em>a</em>-characterized subgroups of <span><math><mi>T</mi></math></span> which are also <em>a</em>-factorizable. We also provide a revised proof of <span><span>[11, Proposition 1.3]</span></span> (Dikranjan, Kunen, 2007), asserting that <span><math><mi>Q</mi><mo>/</mo><mi>Z</mi></math></span> is characterized.</div></div>","PeriodicalId":51201,"journal":{"name":"Topology and its Applications","volume":"359 ","pages":"Article 109130"},"PeriodicalIF":0.6,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142654963","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Frobenius identities and geometrical aspects of Joyal-Tierney Theorem","authors":"Jorge Picado , Aleš Pultr","doi":"10.1016/j.topol.2024.109127","DOIUrl":"10.1016/j.topol.2024.109127","url":null,"abstract":"<div><div>Open and related maps in the point-free context are studied from a consequently geometric perspective: that is, the opens are concrete well-defined subsets, images of localic maps are set-theoretic images <span><math><mi>f</mi><mo>[</mo><mi>U</mi><mo>]</mo></math></span>, etc. We present a short proof of Joyal-Tierney Theorem in this setting, a (geometric) characteristic of localic maps that are just complete, and prove that open localic maps also preserve a natural type of sublocales more general than the open ones. A crucial role is played by Frobenius identities that are briefly discussed also in their general aspects.</div></div>","PeriodicalId":51201,"journal":{"name":"Topology and its Applications","volume":"358 ","pages":"Article 109127"},"PeriodicalIF":0.6,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142592853","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Poincaré compactification for n-dimensional piecewise polynomial vector fields: Theory and applications","authors":"Shimin Li , Jaume Llibre , Qian Tong","doi":"10.1016/j.topol.2024.109126","DOIUrl":"10.1016/j.topol.2024.109126","url":null,"abstract":"<div><div>Poincaré compactification is very important to investigate the dynamics of vector fields in the neighborhood of the infinity, which is the main concern on the escape of particles to infinity in celestial mechanics, astrophysics, astronomy and some branches of chemistry. Since then Poincaré compactification has been extended into various cases, such as: <em>n</em>-dimensional polynomial vector fields, Hamiltonian vector fields, quasi-homogeneous vector fields, rational vector fields, etc.</div><div>In recent years, the piecewise smooth vector fields describing situations with discontinuities such as switching, decisions, impacts etc., have been attracted more and more attention. It is worth to notice that Poincaré compactification has been extended successfully to piecewise polynomial vector fields in 2-dimensional and 3-dimensional cases, and there are also works on <em>n</em>-dimensional Lipschitz continuous vector fields. The main goal of present paper is to extend the Poincaré compactification to <em>n</em>-dimensional piecewise polynomial vector fields which are usually discontinuous, this is a missing point in the existent literature. Thus we can investigate the dynamics near the infinity of <em>n</em>-dimensional piecewise polynomial vector fields. As an application we study the global phase portraits for a class of 3-dimensional piecewise linear differential systems.</div></div>","PeriodicalId":51201,"journal":{"name":"Topology and its Applications","volume":"358 ","pages":"Article 109126"},"PeriodicalIF":0.6,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142586192","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Hyperspaces of the double arrow","authors":"Sebastián Barría","doi":"10.1016/j.topol.2024.109125","DOIUrl":"10.1016/j.topol.2024.109125","url":null,"abstract":"<div><div>Let <span><math><mi>A</mi></math></span> and <span><math><mi>S</mi></math></span> denote the double arrow of Alexandroff and the Sorgenfrey line, respectively. We show that for any <span><math><mi>n</mi><mo>≥</mo><mn>1</mn></math></span>, the space of all unions of at most <em>n</em> closed intervals of <span><math><mi>A</mi></math></span> is not homogeneous. We also prove that the spaces of non-trivial convergent sequences of <span><math><mi>A</mi></math></span> and <span><math><mi>S</mi></math></span> are homogeneous. This partially solves an open question of A. Arhangel'skiǐ <span><span>[1]</span></span>. In contrast, we show that the space of closed intervals of <span><math><mi>S</mi></math></span> is homogeneous.</div></div>","PeriodicalId":51201,"journal":{"name":"Topology and its Applications","volume":"358 ","pages":"Article 109125"},"PeriodicalIF":0.6,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142592850","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A note on non-autonomous discrete dynamical systems","authors":"Roya Makrooni , Neda Abbasi","doi":"10.1016/j.topol.2024.109124","DOIUrl":"10.1016/j.topol.2024.109124","url":null,"abstract":"<div><div>In this paper, we define some qualitative properties of non-autonomous discrete dynamical systems such as orbit shift continuum-wise expansivity, orbit shift persistence and orbit shift <em>α</em>-persistence. Then we discuss the relation between these notions and give necessary examples. Moreover, we prove that every continuum-wise expansive non-autonomous discrete system on a compact metric space is orbit shift continuum-wise expansive.</div></div>","PeriodicalId":51201,"journal":{"name":"Topology and its Applications","volume":"358 ","pages":"Article 109124"},"PeriodicalIF":0.6,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142592852","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}