Topology and its Applications最新文献

筛选
英文 中文
Relatively functionally countable subsets of products 产品的相对功能可数子集
IF 0.6 4区 数学
Topology and its Applications Pub Date : 2024-11-12 DOI: 10.1016/j.topol.2024.109133
Anton E. Lipin
{"title":"Relatively functionally countable subsets of products","authors":"Anton E. Lipin","doi":"10.1016/j.topol.2024.109133","DOIUrl":"10.1016/j.topol.2024.109133","url":null,"abstract":"<div><div>A subset <em>A</em> of a topological space <em>X</em> is called <em>relatively functionally countable</em> (<em>RFC</em>) in <em>X</em>, if for each continuous function <span><math><mi>f</mi><mo>:</mo><mi>X</mi><mo>→</mo><mi>R</mi></math></span> the set <span><math><mi>f</mi><mo>[</mo><mi>A</mi><mo>]</mo></math></span> is countable. We prove that all RFC subsets of a product <span><math><munder><mo>∏</mo><mrow><mi>n</mi><mo>∈</mo><mi>ω</mi></mrow></munder><msub><mrow><mi>X</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> are countable, assuming that spaces <span><math><msub><mrow><mi>X</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> are Tychonoff and all RFC subsets of every <span><math><msub><mrow><mi>X</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> are countable. In particular, in a metrizable space every RFC subset is countable.</div><div>The main tool in the proof is the following result: for every Tychonoff space <em>X</em> and any countable set <span><math><mi>Q</mi><mo>⊆</mo><mi>X</mi></math></span> there is a continuous function <span><math><mi>f</mi><mo>:</mo><msup><mrow><mi>X</mi></mrow><mrow><mi>ω</mi></mrow></msup><mo>→</mo><msup><mrow><mi>R</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> such that the restriction of <em>f</em> to <span><math><msup><mrow><mi>Q</mi></mrow><mrow><mi>ω</mi></mrow></msup></math></span> is injective.</div></div>","PeriodicalId":51201,"journal":{"name":"Topology and its Applications","volume":"359 ","pages":"Article 109133"},"PeriodicalIF":0.6,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142654964","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Extendability to Marczewski-Burstin countably representable ideals 扩展到马茨维斯基-布尔斯坦可数可表示理想的可扩展性
IF 0.6 4区 数学
Topology and its Applications Pub Date : 2024-11-09 DOI: 10.1016/j.topol.2024.109134
Marta Kwela, Jacek Tryba
{"title":"Extendability to Marczewski-Burstin countably representable ideals","authors":"Marta Kwela,&nbsp;Jacek Tryba","doi":"10.1016/j.topol.2024.109134","DOIUrl":"10.1016/j.topol.2024.109134","url":null,"abstract":"<div><div>In the article we consider Marczewski-Burstin countably representable (in short: <span><math><mi>MBC</mi></math></span>) ideals. We propose a concept of extendability to <span><math><mi>MBC</mi></math></span> ideals and provide some of its properties like the fact that it lies between the notions of <em>ω</em>-+-diagonalizability and countable separability. We also answer the question posed in [Topology Appl. 248 (2018), 149–163], by showing that the ideal <span><math><msub><mrow><mi>J</mi></mrow><mrow><mi>c</mi></mrow></msub></math></span> is not <span><math><mi>MBC</mi></math></span>.</div></div>","PeriodicalId":51201,"journal":{"name":"Topology and its Applications","volume":"359 ","pages":"Article 109134"},"PeriodicalIF":0.6,"publicationDate":"2024-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142654965","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
MSNR spaces revisited 重温 MSNR 空间
IF 0.6 4区 数学
Topology and its Applications Pub Date : 2024-11-08 DOI: 10.1016/j.topol.2024.109132
John E. Porter
{"title":"MSNR spaces revisited","authors":"John E. Porter","doi":"10.1016/j.topol.2024.109132","DOIUrl":"10.1016/j.topol.2024.109132","url":null,"abstract":"<div><div>We revisit monotonically semi-neighborhood refining (MSNR) spaces which were introduced by Stares in 1996. MSNR spaces are shown to be lob-spaces with well-ordered (F). The relationships between MSNR spaces with other monotone covering properties are also explored. We show the existence of MSNR spaces that do not posses a monotone locally-finite refining operator and spaces with a monotone locally-finite refining operator that are not MSNR answering a question of Popvassilev and Porter. Compact MSNR spaces may not be metrizable in general, but compact MSNR LOTS are. GO-spaces whose underlying LOTS has a <em>σ</em>-closed-discrete dense subset are shown to have a monotone star-finite refining operator.</div></div>","PeriodicalId":51201,"journal":{"name":"Topology and its Applications","volume":"358 ","pages":"Article 109132"},"PeriodicalIF":0.6,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142656836","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On Ψω-factorizable groups 关于Ψω可因子群
IF 0.6 4区 数学
Topology and its Applications Pub Date : 2024-11-06 DOI: 10.1016/j.topol.2024.109129
Heng Zhang , Wenfei Xi , Yaoqiang Wu , Hongling Li
{"title":"On Ψω-factorizable groups","authors":"Heng Zhang ,&nbsp;Wenfei Xi ,&nbsp;Yaoqiang Wu ,&nbsp;Hongling Li","doi":"10.1016/j.topol.2024.109129","DOIUrl":"10.1016/j.topol.2024.109129","url":null,"abstract":"<div><div>A topological group <em>G</em> is called <span><math><msub><mrow><mi>Ψ</mi></mrow><mrow><mi>ω</mi></mrow></msub></math></span>-factorizable (resp. <span><math><mi>M</mi></math></span>-factorizable) if every continuous real-valued function on <em>G</em> admits a factorization via a continuous homomorphism onto a topological group <em>H</em> with <span><math><mi>ψ</mi><mo>(</mo><mi>H</mi><mo>)</mo><mo>≤</mo><mi>ω</mi></math></span> (resp. a first-countable group). The first purpose of this article is to discuss some characterizations of <span><math><msub><mrow><mi>Ψ</mi></mrow><mrow><mi>ω</mi></mrow></msub></math></span>-factorizable groups. It is shown that a topological group <em>G</em> is <span><math><msub><mrow><mi>Ψ</mi></mrow><mrow><mi>ω</mi></mrow></msub></math></span>-factorizable if and only if every continuous real-valued function on <em>G</em> is <span><math><msub><mrow><mi>G</mi></mrow><mrow><mi>δ</mi></mrow></msub></math></span>-uniformly continuous, if and only if for every cozero-set <em>U</em> of <em>G</em>, there exists a <span><math><msub><mrow><mi>G</mi></mrow><mrow><mi>δ</mi></mrow></msub></math></span>-subgroup <em>N</em> of <em>G</em> such that <span><math><mi>U</mi><mi>N</mi><mo>=</mo><mi>U</mi></math></span>. Sufficient conditions on the <span><math><msub><mrow><mi>Ψ</mi></mrow><mrow><mi>ω</mi></mrow></msub></math></span>-factorizable group <em>G</em> to be <span><math><mi>M</mi></math></span>-factorizable are that <em>G</em> is <em>τ</em>-fine and <em>τ</em>-steady for a cardinal <em>τ</em>.</div></div>","PeriodicalId":51201,"journal":{"name":"Topology and its Applications","volume":"358 ","pages":"Article 109129"},"PeriodicalIF":0.6,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142656835","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On the functor of comonotonically maxitive functionals 论最大单调函数的函子
IF 0.6 4区 数学
Topology and its Applications Pub Date : 2024-11-05 DOI: 10.1016/j.topol.2024.109131
Taras Radul
{"title":"On the functor of comonotonically maxitive functionals","authors":"Taras Radul","doi":"10.1016/j.topol.2024.109131","DOIUrl":"10.1016/j.topol.2024.109131","url":null,"abstract":"<div><div>We introduce a functor of functionals that preserve the maximum of comonotone functions and the addition of constants. This functor is a subfunctor of the functor of order-preserving functionals and includes the idempotent measure functor as a subfunctor. The main aim of this paper is to demonstrate that this functor is isomorphic to the capacity functor. We establish this isomorphism using the fuzzy max-plus integral. In essence, this result can be viewed as an idempotent analogue of the Riesz Theorem, which establishes a correspondence between the set of <em>σ</em>-additive regular Borel measures and the set of positive linear functionals.</div></div>","PeriodicalId":51201,"journal":{"name":"Topology and its Applications","volume":"358 ","pages":"Article 109131"},"PeriodicalIF":0.6,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142592851","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Some remarks on (a)-characterized subgroups of the circle 关于圆的 (a) 特征子群的一些评论
IF 0.6 4区 数学
Topology and its Applications Pub Date : 2024-11-05 DOI: 10.1016/j.topol.2024.109130
Nikola Bogdanovic
{"title":"Some remarks on (a)-characterized subgroups of the circle","authors":"Nikola Bogdanovic","doi":"10.1016/j.topol.2024.109130","DOIUrl":"10.1016/j.topol.2024.109130","url":null,"abstract":"<div><div>In recent years, Barbieri, Dikranjan, Giordano Bruno and Weber have made progress on the problem of determining which characterized subgroups of the circle group are <em>(a-)factorizable</em>, that is, can be written as the sum of two proper (<em>a</em>-)characterized subgroups. We correct an imprecision in one of their results, <span><span>[2, Theorem 5.9]</span></span> from 2017, determining the countable <em>a</em>-characterized subgroups of <span><math><mi>T</mi></math></span> which are also <em>a</em>-factorizable. We also provide a revised proof of <span><span>[11, Proposition 1.3]</span></span> (Dikranjan, Kunen, 2007), asserting that <span><math><mi>Q</mi><mo>/</mo><mi>Z</mi></math></span> is characterized.</div></div>","PeriodicalId":51201,"journal":{"name":"Topology and its Applications","volume":"359 ","pages":"Article 109130"},"PeriodicalIF":0.6,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142654963","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Frobenius identities and geometrical aspects of Joyal-Tierney Theorem 弗罗贝纽斯等式和乔亚尔-蒂尔尼定理的几何方面
IF 0.6 4区 数学
Topology and its Applications Pub Date : 2024-10-31 DOI: 10.1016/j.topol.2024.109127
Jorge Picado , Aleš Pultr
{"title":"Frobenius identities and geometrical aspects of Joyal-Tierney Theorem","authors":"Jorge Picado ,&nbsp;Aleš Pultr","doi":"10.1016/j.topol.2024.109127","DOIUrl":"10.1016/j.topol.2024.109127","url":null,"abstract":"<div><div>Open and related maps in the point-free context are studied from a consequently geometric perspective: that is, the opens are concrete well-defined subsets, images of localic maps are set-theoretic images <span><math><mi>f</mi><mo>[</mo><mi>U</mi><mo>]</mo></math></span>, etc. We present a short proof of Joyal-Tierney Theorem in this setting, a (geometric) characteristic of localic maps that are just complete, and prove that open localic maps also preserve a natural type of sublocales more general than the open ones. A crucial role is played by Frobenius identities that are briefly discussed also in their general aspects.</div></div>","PeriodicalId":51201,"journal":{"name":"Topology and its Applications","volume":"358 ","pages":"Article 109127"},"PeriodicalIF":0.6,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142592853","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Poincaré compactification for n-dimensional piecewise polynomial vector fields: Theory and applications n 维片断多项式矢量场的庞加莱压缩:理论与应用
IF 0.6 4区 数学
Topology and its Applications Pub Date : 2024-10-30 DOI: 10.1016/j.topol.2024.109126
Shimin Li , Jaume Llibre , Qian Tong
{"title":"Poincaré compactification for n-dimensional piecewise polynomial vector fields: Theory and applications","authors":"Shimin Li ,&nbsp;Jaume Llibre ,&nbsp;Qian Tong","doi":"10.1016/j.topol.2024.109126","DOIUrl":"10.1016/j.topol.2024.109126","url":null,"abstract":"<div><div>Poincaré compactification is very important to investigate the dynamics of vector fields in the neighborhood of the infinity, which is the main concern on the escape of particles to infinity in celestial mechanics, astrophysics, astronomy and some branches of chemistry. Since then Poincaré compactification has been extended into various cases, such as: <em>n</em>-dimensional polynomial vector fields, Hamiltonian vector fields, quasi-homogeneous vector fields, rational vector fields, etc.</div><div>In recent years, the piecewise smooth vector fields describing situations with discontinuities such as switching, decisions, impacts etc., have been attracted more and more attention. It is worth to notice that Poincaré compactification has been extended successfully to piecewise polynomial vector fields in 2-dimensional and 3-dimensional cases, and there are also works on <em>n</em>-dimensional Lipschitz continuous vector fields. The main goal of present paper is to extend the Poincaré compactification to <em>n</em>-dimensional piecewise polynomial vector fields which are usually discontinuous, this is a missing point in the existent literature. Thus we can investigate the dynamics near the infinity of <em>n</em>-dimensional piecewise polynomial vector fields. As an application we study the global phase portraits for a class of 3-dimensional piecewise linear differential systems.</div></div>","PeriodicalId":51201,"journal":{"name":"Topology and its Applications","volume":"358 ","pages":"Article 109126"},"PeriodicalIF":0.6,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142586192","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Hyperspaces of the double arrow 双箭头的超空间
IF 0.6 4区 数学
Topology and its Applications Pub Date : 2024-10-29 DOI: 10.1016/j.topol.2024.109125
Sebastián Barría
{"title":"Hyperspaces of the double arrow","authors":"Sebastián Barría","doi":"10.1016/j.topol.2024.109125","DOIUrl":"10.1016/j.topol.2024.109125","url":null,"abstract":"<div><div>Let <span><math><mi>A</mi></math></span> and <span><math><mi>S</mi></math></span> denote the double arrow of Alexandroff and the Sorgenfrey line, respectively. We show that for any <span><math><mi>n</mi><mo>≥</mo><mn>1</mn></math></span>, the space of all unions of at most <em>n</em> closed intervals of <span><math><mi>A</mi></math></span> is not homogeneous. We also prove that the spaces of non-trivial convergent sequences of <span><math><mi>A</mi></math></span> and <span><math><mi>S</mi></math></span> are homogeneous. This partially solves an open question of A. Arhangel'skiǐ <span><span>[1]</span></span>. In contrast, we show that the space of closed intervals of <span><math><mi>S</mi></math></span> is homogeneous.</div></div>","PeriodicalId":51201,"journal":{"name":"Topology and its Applications","volume":"358 ","pages":"Article 109125"},"PeriodicalIF":0.6,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142592850","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A note on non-autonomous discrete dynamical systems 关于非自治离散动力系统的说明
IF 0.6 4区 数学
Topology and its Applications Pub Date : 2024-10-29 DOI: 10.1016/j.topol.2024.109124
Roya Makrooni , Neda Abbasi
{"title":"A note on non-autonomous discrete dynamical systems","authors":"Roya Makrooni ,&nbsp;Neda Abbasi","doi":"10.1016/j.topol.2024.109124","DOIUrl":"10.1016/j.topol.2024.109124","url":null,"abstract":"<div><div>In this paper, we define some qualitative properties of non-autonomous discrete dynamical systems such as orbit shift continuum-wise expansivity, orbit shift persistence and orbit shift <em>α</em>-persistence. Then we discuss the relation between these notions and give necessary examples. Moreover, we prove that every continuum-wise expansive non-autonomous discrete system on a compact metric space is orbit shift continuum-wise expansive.</div></div>","PeriodicalId":51201,"journal":{"name":"Topology and its Applications","volume":"358 ","pages":"Article 109124"},"PeriodicalIF":0.6,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142592852","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信