另一种词典编纂go空间的方法

IF 0.5 4区 数学 Q3 MATHEMATICS
Nobuyuki Kemoto
{"title":"另一种词典编纂go空间的方法","authors":"Nobuyuki Kemoto","doi":"10.1016/j.topol.2025.109522","DOIUrl":null,"url":null,"abstract":"<div><div>It is known that for a GO-space <em>X</em>, there is the smallest LOTS <span><math><msup><mrow><mi>X</mi></mrow><mrow><mo>⁎</mo></mrow></msup></math></span> containing <em>X</em> as a dense subspace, that is, if a LOTS <em>L</em> contains <em>X</em> as a dense subspace, then <em>L</em> contains <span><math><msup><mrow><mi>X</mi></mrow><mrow><mo>⁎</mo></mrow></msup></math></span>.</div><div>Also lexicographic products of LOTS', which is called lexicographic LOTS', have been well-discussed. Recently, the notion of lexicographic products of GO-spaces was defined as follows:</div><div>for a sequence <span><math><mo>{</mo><msub><mrow><mi>X</mi></mrow><mrow><mi>α</mi></mrow></msub><mo>:</mo><mi>α</mi><mo>&lt;</mo><mi>γ</mi><mo>}</mo></math></span> of GO-spaces, the lexicographic GO-space <span><math><mi>X</mi><mo>=</mo><msub><mrow><mo>∏</mo></mrow><mrow><mi>α</mi><mo>&lt;</mo><mi>γ</mi></mrow></msub><msub><mrow><mi>X</mi></mrow><mrow><mi>α</mi></mrow></msub></math></span> means the subspace <em>X</em> of the lexicographic LOTS <span><math><mover><mrow><mi>X</mi></mrow><mrow><mo>ˆ</mo></mrow></mover><mo>=</mo><msub><mrow><mo>∏</mo></mrow><mrow><mi>α</mi><mo>&lt;</mo><mi>γ</mi></mrow></msub><msubsup><mrow><mi>X</mi></mrow><mrow><mi>α</mi></mrow><mrow><mo>⁎</mo></mrow></msubsup></math></span>.</div><div>It is known that for a GO-space <em>X</em>, there is a well-known LOTS <span><math><msup><mrow><mi>X</mi></mrow><mrow><mo>⋄</mo></mrow></msup></math></span> containing <em>X</em> as a closed subspace. In this paper, first we show the LOTS <span><math><msup><mrow><mi>X</mi></mrow><mrow><mo>⋄</mo></mrow></msup></math></span> has the following nice property:</div><div>• if a LOTS <em>L</em> contains <em>X</em> as a closed subspace, then <em>L</em> contains <span><math><msup><mrow><mi>X</mi></mrow><mrow><mo>⋄</mo></mrow></msup></math></span>.</div><div>Using this property, it is natural to define another notion of lexicographic GO-spaces as follows:</div><div>for a sequence <span><math><mo>{</mo><msub><mrow><mi>X</mi></mrow><mrow><mi>α</mi></mrow></msub><mo>:</mo><mi>α</mi><mo>&lt;</mo><mi>γ</mi><mo>}</mo></math></span> of GO-spaces, the lexicographic GO-space <span><math><mi>X</mi><mo>=</mo><msub><mrow><mo>∏</mo></mrow><mrow><mi>α</mi><mo>&lt;</mo><mi>γ</mi></mrow></msub><msub><mrow><mi>X</mi></mrow><mrow><mi>α</mi></mrow></msub></math></span> means the subspace <em>X</em> of the lexicographic LOTS <span><math><mover><mrow><mi>X</mi></mrow><mrow><mo>ˇ</mo></mrow></mover><mo>=</mo><msub><mrow><mo>∏</mo></mrow><mrow><mi>α</mi><mo>&lt;</mo><mi>γ</mi></mrow></msub><msubsup><mrow><mi>X</mi></mrow><mrow><mi>α</mi></mrow><mrow><mo>⋄</mo></mrow></msubsup></math></span>.</div><div>We will see:</div><div>• the GO-space <em>X</em> as a subspace of <span><math><mover><mrow><mi>X</mi></mrow><mrow><mo>ˆ</mo></mrow></mover></math></span> coincides with the GO-space <em>X</em> as a subspace of <span><math><mover><mrow><mi>X</mi></mrow><mrow><mo>ˇ</mo></mrow></mover></math></span>,</div><div>• <span><math><msup><mrow><mi>X</mi></mrow><mrow><mo>⋄</mo></mrow></msup></math></span> is contained in <span><math><mover><mrow><mi>X</mi></mrow><mrow><mo>ˇ</mo></mrow></mover></math></span>.</div><div>• we characterize that the lexicographic GO-space <em>X</em> is closed in <span><math><mover><mrow><mi>X</mi></mrow><mrow><mo>ˇ</mo></mrow></mover></math></span>.</div></div>","PeriodicalId":51201,"journal":{"name":"Topology and its Applications","volume":"373 ","pages":"Article 109522"},"PeriodicalIF":0.5000,"publicationDate":"2025-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Another approach for lexicographic GO-spaces\",\"authors\":\"Nobuyuki Kemoto\",\"doi\":\"10.1016/j.topol.2025.109522\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>It is known that for a GO-space <em>X</em>, there is the smallest LOTS <span><math><msup><mrow><mi>X</mi></mrow><mrow><mo>⁎</mo></mrow></msup></math></span> containing <em>X</em> as a dense subspace, that is, if a LOTS <em>L</em> contains <em>X</em> as a dense subspace, then <em>L</em> contains <span><math><msup><mrow><mi>X</mi></mrow><mrow><mo>⁎</mo></mrow></msup></math></span>.</div><div>Also lexicographic products of LOTS', which is called lexicographic LOTS', have been well-discussed. Recently, the notion of lexicographic products of GO-spaces was defined as follows:</div><div>for a sequence <span><math><mo>{</mo><msub><mrow><mi>X</mi></mrow><mrow><mi>α</mi></mrow></msub><mo>:</mo><mi>α</mi><mo>&lt;</mo><mi>γ</mi><mo>}</mo></math></span> of GO-spaces, the lexicographic GO-space <span><math><mi>X</mi><mo>=</mo><msub><mrow><mo>∏</mo></mrow><mrow><mi>α</mi><mo>&lt;</mo><mi>γ</mi></mrow></msub><msub><mrow><mi>X</mi></mrow><mrow><mi>α</mi></mrow></msub></math></span> means the subspace <em>X</em> of the lexicographic LOTS <span><math><mover><mrow><mi>X</mi></mrow><mrow><mo>ˆ</mo></mrow></mover><mo>=</mo><msub><mrow><mo>∏</mo></mrow><mrow><mi>α</mi><mo>&lt;</mo><mi>γ</mi></mrow></msub><msubsup><mrow><mi>X</mi></mrow><mrow><mi>α</mi></mrow><mrow><mo>⁎</mo></mrow></msubsup></math></span>.</div><div>It is known that for a GO-space <em>X</em>, there is a well-known LOTS <span><math><msup><mrow><mi>X</mi></mrow><mrow><mo>⋄</mo></mrow></msup></math></span> containing <em>X</em> as a closed subspace. In this paper, first we show the LOTS <span><math><msup><mrow><mi>X</mi></mrow><mrow><mo>⋄</mo></mrow></msup></math></span> has the following nice property:</div><div>• if a LOTS <em>L</em> contains <em>X</em> as a closed subspace, then <em>L</em> contains <span><math><msup><mrow><mi>X</mi></mrow><mrow><mo>⋄</mo></mrow></msup></math></span>.</div><div>Using this property, it is natural to define another notion of lexicographic GO-spaces as follows:</div><div>for a sequence <span><math><mo>{</mo><msub><mrow><mi>X</mi></mrow><mrow><mi>α</mi></mrow></msub><mo>:</mo><mi>α</mi><mo>&lt;</mo><mi>γ</mi><mo>}</mo></math></span> of GO-spaces, the lexicographic GO-space <span><math><mi>X</mi><mo>=</mo><msub><mrow><mo>∏</mo></mrow><mrow><mi>α</mi><mo>&lt;</mo><mi>γ</mi></mrow></msub><msub><mrow><mi>X</mi></mrow><mrow><mi>α</mi></mrow></msub></math></span> means the subspace <em>X</em> of the lexicographic LOTS <span><math><mover><mrow><mi>X</mi></mrow><mrow><mo>ˇ</mo></mrow></mover><mo>=</mo><msub><mrow><mo>∏</mo></mrow><mrow><mi>α</mi><mo>&lt;</mo><mi>γ</mi></mrow></msub><msubsup><mrow><mi>X</mi></mrow><mrow><mi>α</mi></mrow><mrow><mo>⋄</mo></mrow></msubsup></math></span>.</div><div>We will see:</div><div>• the GO-space <em>X</em> as a subspace of <span><math><mover><mrow><mi>X</mi></mrow><mrow><mo>ˆ</mo></mrow></mover></math></span> coincides with the GO-space <em>X</em> as a subspace of <span><math><mover><mrow><mi>X</mi></mrow><mrow><mo>ˇ</mo></mrow></mover></math></span>,</div><div>• <span><math><msup><mrow><mi>X</mi></mrow><mrow><mo>⋄</mo></mrow></msup></math></span> is contained in <span><math><mover><mrow><mi>X</mi></mrow><mrow><mo>ˇ</mo></mrow></mover></math></span>.</div><div>• we characterize that the lexicographic GO-space <em>X</em> is closed in <span><math><mover><mrow><mi>X</mi></mrow><mrow><mo>ˇ</mo></mrow></mover></math></span>.</div></div>\",\"PeriodicalId\":51201,\"journal\":{\"name\":\"Topology and its Applications\",\"volume\":\"373 \",\"pages\":\"Article 109522\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2025-07-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Topology and its Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0166864125003207\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Topology and its Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0166864125003207","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

已知对于go -空间X,存在包含X为稠密子空间的最小LOTS X,即如果一个lot L包含X为稠密子空间,则L包含X。此外,词典编纂的产品,被称为词典编纂的lot,已经得到了很好的讨论。最近,将go -空间的词典积的概念定义为:对于go -空间的序列{Xα:α<;γ},词典积go -空间X=∏α<;γXα表示词典积lot的子空间X=∏α<γXα。已知对于go空间X,存在一个众所周知的LOTS X,其中包含X为封闭子空间。在本文中,我们首先证明了LOTS X具有以下良好的性质:•如果一个LOTS L包含X作为闭子空间,则L包含X 。利用这一性质,很自然地定义了词典学go -空间的另一个概念如下:对于go -空间的序列{Xα:α<;γ},词典学go -空间X=∏α<;γXα表示词典学LOTS X′=∏α<;γXα的子空间X。我们将看到:•作为X´的子空间的go空间X与作为X´的子空间的go空间X重合,•X´包含在X´中。•我们描述了词典学go空间X在X′′中是封闭的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Another approach for lexicographic GO-spaces
It is known that for a GO-space X, there is the smallest LOTS X containing X as a dense subspace, that is, if a LOTS L contains X as a dense subspace, then L contains X.
Also lexicographic products of LOTS', which is called lexicographic LOTS', have been well-discussed. Recently, the notion of lexicographic products of GO-spaces was defined as follows:
for a sequence {Xα:α<γ} of GO-spaces, the lexicographic GO-space X=α<γXα means the subspace X of the lexicographic LOTS Xˆ=α<γXα.
It is known that for a GO-space X, there is a well-known LOTS X containing X as a closed subspace. In this paper, first we show the LOTS X has the following nice property:
• if a LOTS L contains X as a closed subspace, then L contains X.
Using this property, it is natural to define another notion of lexicographic GO-spaces as follows:
for a sequence {Xα:α<γ} of GO-spaces, the lexicographic GO-space X=α<γXα means the subspace X of the lexicographic LOTS Xˇ=α<γXα.
We will see:
• the GO-space X as a subspace of Xˆ coincides with the GO-space X as a subspace of Xˇ,
X is contained in Xˇ.
• we characterize that the lexicographic GO-space X is closed in Xˇ.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.20
自引率
33.30%
发文量
251
审稿时长
6 months
期刊介绍: Topology and its Applications is primarily concerned with publishing original research papers of moderate length. However, a limited number of carefully selected survey or expository papers are also included. The mathematical focus of the journal is that suggested by the title: Research in Topology. It is felt that it is inadvisable to attempt a definitive description of topology as understood for this journal. Certainly the subject includes the algebraic, general, geometric, and set-theoretic facets of topology as well as areas of interactions between topology and other mathematical disciplines, e.g. topological algebra, topological dynamics, functional analysis, category theory. Since the roles of various aspects of topology continue to change, the non-specific delineation of topics serves to reflect the current state of research in topology. At regular intervals, the journal publishes a section entitled Open Problems in Topology, edited by J. van Mill and G.M. Reed. This is a status report on the 1100 problems listed in the book of the same name published by North-Holland in 1990, edited by van Mill and Reed.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信