{"title":"另一种词典编纂go空间的方法","authors":"Nobuyuki Kemoto","doi":"10.1016/j.topol.2025.109522","DOIUrl":null,"url":null,"abstract":"<div><div>It is known that for a GO-space <em>X</em>, there is the smallest LOTS <span><math><msup><mrow><mi>X</mi></mrow><mrow><mo>⁎</mo></mrow></msup></math></span> containing <em>X</em> as a dense subspace, that is, if a LOTS <em>L</em> contains <em>X</em> as a dense subspace, then <em>L</em> contains <span><math><msup><mrow><mi>X</mi></mrow><mrow><mo>⁎</mo></mrow></msup></math></span>.</div><div>Also lexicographic products of LOTS', which is called lexicographic LOTS', have been well-discussed. Recently, the notion of lexicographic products of GO-spaces was defined as follows:</div><div>for a sequence <span><math><mo>{</mo><msub><mrow><mi>X</mi></mrow><mrow><mi>α</mi></mrow></msub><mo>:</mo><mi>α</mi><mo><</mo><mi>γ</mi><mo>}</mo></math></span> of GO-spaces, the lexicographic GO-space <span><math><mi>X</mi><mo>=</mo><msub><mrow><mo>∏</mo></mrow><mrow><mi>α</mi><mo><</mo><mi>γ</mi></mrow></msub><msub><mrow><mi>X</mi></mrow><mrow><mi>α</mi></mrow></msub></math></span> means the subspace <em>X</em> of the lexicographic LOTS <span><math><mover><mrow><mi>X</mi></mrow><mrow><mo>ˆ</mo></mrow></mover><mo>=</mo><msub><mrow><mo>∏</mo></mrow><mrow><mi>α</mi><mo><</mo><mi>γ</mi></mrow></msub><msubsup><mrow><mi>X</mi></mrow><mrow><mi>α</mi></mrow><mrow><mo>⁎</mo></mrow></msubsup></math></span>.</div><div>It is known that for a GO-space <em>X</em>, there is a well-known LOTS <span><math><msup><mrow><mi>X</mi></mrow><mrow><mo>⋄</mo></mrow></msup></math></span> containing <em>X</em> as a closed subspace. In this paper, first we show the LOTS <span><math><msup><mrow><mi>X</mi></mrow><mrow><mo>⋄</mo></mrow></msup></math></span> has the following nice property:</div><div>• if a LOTS <em>L</em> contains <em>X</em> as a closed subspace, then <em>L</em> contains <span><math><msup><mrow><mi>X</mi></mrow><mrow><mo>⋄</mo></mrow></msup></math></span>.</div><div>Using this property, it is natural to define another notion of lexicographic GO-spaces as follows:</div><div>for a sequence <span><math><mo>{</mo><msub><mrow><mi>X</mi></mrow><mrow><mi>α</mi></mrow></msub><mo>:</mo><mi>α</mi><mo><</mo><mi>γ</mi><mo>}</mo></math></span> of GO-spaces, the lexicographic GO-space <span><math><mi>X</mi><mo>=</mo><msub><mrow><mo>∏</mo></mrow><mrow><mi>α</mi><mo><</mo><mi>γ</mi></mrow></msub><msub><mrow><mi>X</mi></mrow><mrow><mi>α</mi></mrow></msub></math></span> means the subspace <em>X</em> of the lexicographic LOTS <span><math><mover><mrow><mi>X</mi></mrow><mrow><mo>ˇ</mo></mrow></mover><mo>=</mo><msub><mrow><mo>∏</mo></mrow><mrow><mi>α</mi><mo><</mo><mi>γ</mi></mrow></msub><msubsup><mrow><mi>X</mi></mrow><mrow><mi>α</mi></mrow><mrow><mo>⋄</mo></mrow></msubsup></math></span>.</div><div>We will see:</div><div>• the GO-space <em>X</em> as a subspace of <span><math><mover><mrow><mi>X</mi></mrow><mrow><mo>ˆ</mo></mrow></mover></math></span> coincides with the GO-space <em>X</em> as a subspace of <span><math><mover><mrow><mi>X</mi></mrow><mrow><mo>ˇ</mo></mrow></mover></math></span>,</div><div>• <span><math><msup><mrow><mi>X</mi></mrow><mrow><mo>⋄</mo></mrow></msup></math></span> is contained in <span><math><mover><mrow><mi>X</mi></mrow><mrow><mo>ˇ</mo></mrow></mover></math></span>.</div><div>• we characterize that the lexicographic GO-space <em>X</em> is closed in <span><math><mover><mrow><mi>X</mi></mrow><mrow><mo>ˇ</mo></mrow></mover></math></span>.</div></div>","PeriodicalId":51201,"journal":{"name":"Topology and its Applications","volume":"373 ","pages":"Article 109522"},"PeriodicalIF":0.5000,"publicationDate":"2025-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Another approach for lexicographic GO-spaces\",\"authors\":\"Nobuyuki Kemoto\",\"doi\":\"10.1016/j.topol.2025.109522\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>It is known that for a GO-space <em>X</em>, there is the smallest LOTS <span><math><msup><mrow><mi>X</mi></mrow><mrow><mo>⁎</mo></mrow></msup></math></span> containing <em>X</em> as a dense subspace, that is, if a LOTS <em>L</em> contains <em>X</em> as a dense subspace, then <em>L</em> contains <span><math><msup><mrow><mi>X</mi></mrow><mrow><mo>⁎</mo></mrow></msup></math></span>.</div><div>Also lexicographic products of LOTS', which is called lexicographic LOTS', have been well-discussed. Recently, the notion of lexicographic products of GO-spaces was defined as follows:</div><div>for a sequence <span><math><mo>{</mo><msub><mrow><mi>X</mi></mrow><mrow><mi>α</mi></mrow></msub><mo>:</mo><mi>α</mi><mo><</mo><mi>γ</mi><mo>}</mo></math></span> of GO-spaces, the lexicographic GO-space <span><math><mi>X</mi><mo>=</mo><msub><mrow><mo>∏</mo></mrow><mrow><mi>α</mi><mo><</mo><mi>γ</mi></mrow></msub><msub><mrow><mi>X</mi></mrow><mrow><mi>α</mi></mrow></msub></math></span> means the subspace <em>X</em> of the lexicographic LOTS <span><math><mover><mrow><mi>X</mi></mrow><mrow><mo>ˆ</mo></mrow></mover><mo>=</mo><msub><mrow><mo>∏</mo></mrow><mrow><mi>α</mi><mo><</mo><mi>γ</mi></mrow></msub><msubsup><mrow><mi>X</mi></mrow><mrow><mi>α</mi></mrow><mrow><mo>⁎</mo></mrow></msubsup></math></span>.</div><div>It is known that for a GO-space <em>X</em>, there is a well-known LOTS <span><math><msup><mrow><mi>X</mi></mrow><mrow><mo>⋄</mo></mrow></msup></math></span> containing <em>X</em> as a closed subspace. In this paper, first we show the LOTS <span><math><msup><mrow><mi>X</mi></mrow><mrow><mo>⋄</mo></mrow></msup></math></span> has the following nice property:</div><div>• if a LOTS <em>L</em> contains <em>X</em> as a closed subspace, then <em>L</em> contains <span><math><msup><mrow><mi>X</mi></mrow><mrow><mo>⋄</mo></mrow></msup></math></span>.</div><div>Using this property, it is natural to define another notion of lexicographic GO-spaces as follows:</div><div>for a sequence <span><math><mo>{</mo><msub><mrow><mi>X</mi></mrow><mrow><mi>α</mi></mrow></msub><mo>:</mo><mi>α</mi><mo><</mo><mi>γ</mi><mo>}</mo></math></span> of GO-spaces, the lexicographic GO-space <span><math><mi>X</mi><mo>=</mo><msub><mrow><mo>∏</mo></mrow><mrow><mi>α</mi><mo><</mo><mi>γ</mi></mrow></msub><msub><mrow><mi>X</mi></mrow><mrow><mi>α</mi></mrow></msub></math></span> means the subspace <em>X</em> of the lexicographic LOTS <span><math><mover><mrow><mi>X</mi></mrow><mrow><mo>ˇ</mo></mrow></mover><mo>=</mo><msub><mrow><mo>∏</mo></mrow><mrow><mi>α</mi><mo><</mo><mi>γ</mi></mrow></msub><msubsup><mrow><mi>X</mi></mrow><mrow><mi>α</mi></mrow><mrow><mo>⋄</mo></mrow></msubsup></math></span>.</div><div>We will see:</div><div>• the GO-space <em>X</em> as a subspace of <span><math><mover><mrow><mi>X</mi></mrow><mrow><mo>ˆ</mo></mrow></mover></math></span> coincides with the GO-space <em>X</em> as a subspace of <span><math><mover><mrow><mi>X</mi></mrow><mrow><mo>ˇ</mo></mrow></mover></math></span>,</div><div>• <span><math><msup><mrow><mi>X</mi></mrow><mrow><mo>⋄</mo></mrow></msup></math></span> is contained in <span><math><mover><mrow><mi>X</mi></mrow><mrow><mo>ˇ</mo></mrow></mover></math></span>.</div><div>• we characterize that the lexicographic GO-space <em>X</em> is closed in <span><math><mover><mrow><mi>X</mi></mrow><mrow><mo>ˇ</mo></mrow></mover></math></span>.</div></div>\",\"PeriodicalId\":51201,\"journal\":{\"name\":\"Topology and its Applications\",\"volume\":\"373 \",\"pages\":\"Article 109522\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2025-07-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Topology and its Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0166864125003207\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Topology and its Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0166864125003207","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
It is known that for a GO-space X, there is the smallest LOTS containing X as a dense subspace, that is, if a LOTS L contains X as a dense subspace, then L contains .
Also lexicographic products of LOTS', which is called lexicographic LOTS', have been well-discussed. Recently, the notion of lexicographic products of GO-spaces was defined as follows:
for a sequence of GO-spaces, the lexicographic GO-space means the subspace X of the lexicographic LOTS .
It is known that for a GO-space X, there is a well-known LOTS containing X as a closed subspace. In this paper, first we show the LOTS has the following nice property:
• if a LOTS L contains X as a closed subspace, then L contains .
Using this property, it is natural to define another notion of lexicographic GO-spaces as follows:
for a sequence of GO-spaces, the lexicographic GO-space means the subspace X of the lexicographic LOTS .
We will see:
• the GO-space X as a subspace of coincides with the GO-space X as a subspace of ,
• is contained in .
• we characterize that the lexicographic GO-space X is closed in .
期刊介绍:
Topology and its Applications is primarily concerned with publishing original research papers of moderate length. However, a limited number of carefully selected survey or expository papers are also included. The mathematical focus of the journal is that suggested by the title: Research in Topology. It is felt that it is inadvisable to attempt a definitive description of topology as understood for this journal. Certainly the subject includes the algebraic, general, geometric, and set-theoretic facets of topology as well as areas of interactions between topology and other mathematical disciplines, e.g. topological algebra, topological dynamics, functional analysis, category theory. Since the roles of various aspects of topology continue to change, the non-specific delineation of topics serves to reflect the current state of research in topology.
At regular intervals, the journal publishes a section entitled Open Problems in Topology, edited by J. van Mill and G.M. Reed. This is a status report on the 1100 problems listed in the book of the same name published by North-Holland in 1990, edited by van Mill and Reed.