弱鲍姆加特纳公理与泛空间

IF 0.5 4区 数学 Q3 MATHEMATICS
Corey Bacal Switzer
{"title":"弱鲍姆加特纳公理与泛空间","authors":"Corey Bacal Switzer","doi":"10.1016/j.topol.2025.109530","DOIUrl":null,"url":null,"abstract":"<div><div>If <em>X</em> is a topological space and <em>κ</em> is a cardinal then <span><math><msub><mrow><mi>BA</mi></mrow><mrow><mi>κ</mi></mrow></msub><mo>(</mo><mi>X</mi><mo>)</mo></math></span> is the statement that for each pair <span><math><mi>A</mi><mo>,</mo><mi>B</mi><mo>⊆</mo><mi>X</mi></math></span> of <em>κ</em>-dense subsets there is an autohomeomorphism <span><math><mi>h</mi><mo>:</mo><mi>X</mi><mo>→</mo><mi>X</mi></math></span> mapping <em>A</em> to <em>B</em>. In particular <span><math><msub><mrow><mi>BA</mi></mrow><mrow><msub><mrow><mi>ℵ</mi></mrow><mrow><mn>1</mn></mrow></msub></mrow></msub><mo>(</mo><mi>R</mi><mo>)</mo></math></span> is equivalent the celebrated Baumgartner axiom on isomorphism types of <span><math><msub><mrow><mi>ℵ</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span>-dense linear orders. In this paper we consider two natural weakenings of <span><math><msub><mrow><mi>BA</mi></mrow><mrow><mi>κ</mi></mrow></msub><mo>(</mo><mi>X</mi><mo>)</mo></math></span> which we call <span><math><msubsup><mrow><mi>BA</mi></mrow><mrow><mi>κ</mi></mrow><mrow><mo>−</mo></mrow></msubsup><mo>(</mo><mi>X</mi><mo>)</mo></math></span> and <span><math><msub><mrow><mi>U</mi></mrow><mrow><mi>κ</mi></mrow></msub><mo>(</mo><mi>X</mi><mo>)</mo></math></span> for arbitrary perfect Polish spaces <em>X</em>. We show that the first of these, though properly weaker, entails many of the more striking consequences of <span><math><msub><mrow><mi>BA</mi></mrow><mrow><mi>κ</mi></mrow></msub><mo>(</mo><mi>X</mi><mo>)</mo></math></span> while the second does not. Nevertheless the second is still independent of <span><math><mi>ZFC</mi></math></span> and we show in particular that it fails in the Cohen and random models. This motivates several new classes of pairs of spaces which are “very far from being homeomorphic” which we call “avoiding”, “strongly avoiding”, and “totally avoiding”. The paper concludes by studying these classes, particularly in the context of forcing theory, in an attempt to gauge how different weak Baumgartner axioms may be separated.</div></div>","PeriodicalId":51201,"journal":{"name":"Topology and its Applications","volume":"373 ","pages":"Article 109530"},"PeriodicalIF":0.5000,"publicationDate":"2025-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Weak Baumgartner axioms and universal spaces\",\"authors\":\"Corey Bacal Switzer\",\"doi\":\"10.1016/j.topol.2025.109530\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>If <em>X</em> is a topological space and <em>κ</em> is a cardinal then <span><math><msub><mrow><mi>BA</mi></mrow><mrow><mi>κ</mi></mrow></msub><mo>(</mo><mi>X</mi><mo>)</mo></math></span> is the statement that for each pair <span><math><mi>A</mi><mo>,</mo><mi>B</mi><mo>⊆</mo><mi>X</mi></math></span> of <em>κ</em>-dense subsets there is an autohomeomorphism <span><math><mi>h</mi><mo>:</mo><mi>X</mi><mo>→</mo><mi>X</mi></math></span> mapping <em>A</em> to <em>B</em>. In particular <span><math><msub><mrow><mi>BA</mi></mrow><mrow><msub><mrow><mi>ℵ</mi></mrow><mrow><mn>1</mn></mrow></msub></mrow></msub><mo>(</mo><mi>R</mi><mo>)</mo></math></span> is equivalent the celebrated Baumgartner axiom on isomorphism types of <span><math><msub><mrow><mi>ℵ</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span>-dense linear orders. In this paper we consider two natural weakenings of <span><math><msub><mrow><mi>BA</mi></mrow><mrow><mi>κ</mi></mrow></msub><mo>(</mo><mi>X</mi><mo>)</mo></math></span> which we call <span><math><msubsup><mrow><mi>BA</mi></mrow><mrow><mi>κ</mi></mrow><mrow><mo>−</mo></mrow></msubsup><mo>(</mo><mi>X</mi><mo>)</mo></math></span> and <span><math><msub><mrow><mi>U</mi></mrow><mrow><mi>κ</mi></mrow></msub><mo>(</mo><mi>X</mi><mo>)</mo></math></span> for arbitrary perfect Polish spaces <em>X</em>. We show that the first of these, though properly weaker, entails many of the more striking consequences of <span><math><msub><mrow><mi>BA</mi></mrow><mrow><mi>κ</mi></mrow></msub><mo>(</mo><mi>X</mi><mo>)</mo></math></span> while the second does not. Nevertheless the second is still independent of <span><math><mi>ZFC</mi></math></span> and we show in particular that it fails in the Cohen and random models. This motivates several new classes of pairs of spaces which are “very far from being homeomorphic” which we call “avoiding”, “strongly avoiding”, and “totally avoiding”. The paper concludes by studying these classes, particularly in the context of forcing theory, in an attempt to gauge how different weak Baumgartner axioms may be separated.</div></div>\",\"PeriodicalId\":51201,\"journal\":{\"name\":\"Topology and its Applications\",\"volume\":\"373 \",\"pages\":\"Article 109530\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2025-07-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Topology and its Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0166864125003281\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Topology and its Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0166864125003281","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

如果X是一个拓扑空间,κ是一个基数,则bak (X)是对于κ-密集子集的每一对a,B⊥X存在一个自同胚h:X→X映射a到B的命题,特别是BA∈1(R)等价于著名的关于∈1-密集线性序的同构类型的Baumgartner公理。在本文中,我们考虑了任意完美波兰空间X的两个自然弱化的bak (X),我们称之为bak−(X)和Uκ(X)。我们证明了其中的第一个,虽然适当地弱,但带来了许多更显著的后果,而第二个则没有。然而,第二个仍然独立于ZFC,我们特别指出,它在Cohen和随机模型中失败。这就产生了一些“远非同胚”的空间对的新类别,我们称之为“回避”、“强烈回避”和“完全回避”。论文最后通过研究这些类,特别是在强迫理论的背景下,试图衡量不同的弱鲍姆加特纳公理是如何分离的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Weak Baumgartner axioms and universal spaces
If X is a topological space and κ is a cardinal then BAκ(X) is the statement that for each pair A,BX of κ-dense subsets there is an autohomeomorphism h:XX mapping A to B. In particular BA1(R) is equivalent the celebrated Baumgartner axiom on isomorphism types of 1-dense linear orders. In this paper we consider two natural weakenings of BAκ(X) which we call BAκ(X) and Uκ(X) for arbitrary perfect Polish spaces X. We show that the first of these, though properly weaker, entails many of the more striking consequences of BAκ(X) while the second does not. Nevertheless the second is still independent of ZFC and we show in particular that it fails in the Cohen and random models. This motivates several new classes of pairs of spaces which are “very far from being homeomorphic” which we call “avoiding”, “strongly avoiding”, and “totally avoiding”. The paper concludes by studying these classes, particularly in the context of forcing theory, in an attempt to gauge how different weak Baumgartner axioms may be separated.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.20
自引率
33.30%
发文量
251
审稿时长
6 months
期刊介绍: Topology and its Applications is primarily concerned with publishing original research papers of moderate length. However, a limited number of carefully selected survey or expository papers are also included. The mathematical focus of the journal is that suggested by the title: Research in Topology. It is felt that it is inadvisable to attempt a definitive description of topology as understood for this journal. Certainly the subject includes the algebraic, general, geometric, and set-theoretic facets of topology as well as areas of interactions between topology and other mathematical disciplines, e.g. topological algebra, topological dynamics, functional analysis, category theory. Since the roles of various aspects of topology continue to change, the non-specific delineation of topics serves to reflect the current state of research in topology. At regular intervals, the journal publishes a section entitled Open Problems in Topology, edited by J. van Mill and G.M. Reed. This is a status report on the 1100 problems listed in the book of the same name published by North-Holland in 1990, edited by van Mill and Reed.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信