Topology and its Applications最新文献

筛选
英文 中文
Nested cobordisms, Cyl-objects and Temperley-Lieb algebras 嵌套协矩阵,圆对象和Temperley-Lieb代数
IF 0.5 4区 数学
Topology and its Applications Pub Date : 2025-05-28 DOI: 10.1016/j.topol.2025.109448
Maxine E. Calle , Renee S. Hoekzema , Laura Murray , Natalia Pacheco-Tallaj , Carmen Rovi , Shruthi Sridhar-Shapiro
{"title":"Nested cobordisms, Cyl-objects and Temperley-Lieb algebras","authors":"Maxine E. Calle ,&nbsp;Renee S. Hoekzema ,&nbsp;Laura Murray ,&nbsp;Natalia Pacheco-Tallaj ,&nbsp;Carmen Rovi ,&nbsp;Shruthi Sridhar-Shapiro","doi":"10.1016/j.topol.2025.109448","DOIUrl":"10.1016/j.topol.2025.109448","url":null,"abstract":"<div><div>We introduce a discrete cobordism category for nested manifolds and nested cobordisms between them. A variation of stratified Morse theory applies in this case, and yields generators for a general nested cobordism category. Restricting to a low-dimensional example of the “striped cylinder” cobordism category Cyl, we give a complete set of relations for the generators. With an eye towards the study of TQFTs defined on a nested cobordism category, we describe functors <span><math><mrow><mi>Cyl</mi></mrow><mo>→</mo><mi>C</mi></math></span>, which we call Cyl-objects in <span><math><mi>C</mi></math></span>, and show that they are related to known algebraic structures such as Temperley-Lieb algebras and cyclic objects. We moreover define novel algebraic constructions inspired by the structure of Cyl-objects, namely a doubling construction on cyclic objects analogous to edgewise subdivision, and a cylindrical bar construction on self-dual objects in a monoidal category.</div></div>","PeriodicalId":51201,"journal":{"name":"Topology and its Applications","volume":"376 ","pages":"Article 109448"},"PeriodicalIF":0.5,"publicationDate":"2025-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145183855","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
2-Segal sets from cuts of rooted trees 从有根的树的切下来的2萼片组
IF 0.5 4区 数学
Topology and its Applications Pub Date : 2025-05-28 DOI: 10.1016/j.topol.2025.109447
Julia E. Bergner , Olivia Borghi , Pinka Dey , Imma Gálvez-Carrillo , Teresa Hoekstra-Mendoza
{"title":"2-Segal sets from cuts of rooted trees","authors":"Julia E. Bergner ,&nbsp;Olivia Borghi ,&nbsp;Pinka Dey ,&nbsp;Imma Gálvez-Carrillo ,&nbsp;Teresa Hoekstra-Mendoza","doi":"10.1016/j.topol.2025.109447","DOIUrl":"10.1016/j.topol.2025.109447","url":null,"abstract":"<div><div>The theory of 2-Segal sets has connections to various important constructions such as the Waldhausen <span><math><msub><mrow><mi>S</mi></mrow><mrow><mo>•</mo></mrow></msub></math></span>-construction in algebraic <em>K</em>-theory, Hall algebras, and (co)operads. In this paper, we construct 2-Segal sets from rooted trees and explore how these applications are illustrated by this example.</div></div>","PeriodicalId":51201,"journal":{"name":"Topology and its Applications","volume":"376 ","pages":"Article 109447"},"PeriodicalIF":0.5,"publicationDate":"2025-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145183853","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
New family of hyperbolic knots whose Upsilon invariants are convex Upsilon不变量为凸的新双曲结族
IF 0.6 4区 数学
Topology and its Applications Pub Date : 2025-05-27 DOI: 10.1016/j.topol.2025.109441
Keisuke Himeno
{"title":"New family of hyperbolic knots whose Upsilon invariants are convex","authors":"Keisuke Himeno","doi":"10.1016/j.topol.2025.109441","DOIUrl":"10.1016/j.topol.2025.109441","url":null,"abstract":"<div><div>The Upsilon invariant of a knot is a concordance invariant derived from knot Floer homology theory. It is a piecewise linear continuous function defined on the interval <span><math><mo>[</mo><mn>0</mn><mo>,</mo><mn>2</mn><mo>]</mo></math></span>. Borodzik and Hedden gave a question asking for which knots the Upsilon invariant is a convex function. It is known that the Upsilon invariant of any <em>L</em>-space knot, and a Floer thin knot after taking its mirror image, if necessary, as well, is convex. Also, we can make infinitely many knots whose Upsilon invariants are convex by the connected sum operation. In this paper, we construct hyperbolic knots with convex Upsilon invariants which are none of the above. To calculate the full knot Floer complex, we make use of a combinatorial method for <span><math><mo>(</mo><mn>1</mn><mo>,</mo><mn>1</mn><mo>)</mo></math></span>-knots.</div></div>","PeriodicalId":51201,"journal":{"name":"Topology and its Applications","volume":"373 ","pages":"Article 109441"},"PeriodicalIF":0.6,"publicationDate":"2025-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144196486","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Uniquely compatible transfer systems for cyclic groups of order prqs 阶prqs循环群的唯一相容传递系统
IF 0.5 4区 数学
Topology and its Applications Pub Date : 2025-05-27 DOI: 10.1016/j.topol.2025.109443
Kristen Mazur , Angélica M. Osorno , Constanze Roitzheim , Rekha Santhanam , Danika Van Niel , Valentina Zapata Castro
{"title":"Uniquely compatible transfer systems for cyclic groups of order prqs","authors":"Kristen Mazur ,&nbsp;Angélica M. Osorno ,&nbsp;Constanze Roitzheim ,&nbsp;Rekha Santhanam ,&nbsp;Danika Van Niel ,&nbsp;Valentina Zapata Castro","doi":"10.1016/j.topol.2025.109443","DOIUrl":"10.1016/j.topol.2025.109443","url":null,"abstract":"<div><div>Bi-incomplete Tambara functors over a group <em>G</em> can be understood in terms of compatible pairs of <em>G</em>-transfer systems. In the case of <span><math><mi>G</mi><mo>=</mo><msub><mrow><mi>C</mi></mrow><mrow><msup><mrow><mi>p</mi></mrow><mrow><mi>n</mi></mrow></msup></mrow></msub></math></span><span>, Hill, Meng and Li gave a necessary and sufficient condition for compatibility and computed the exact number of compatible pairs. In this article, we study compatible pairs of </span><em>G</em>-transfer systems for the case <span><math><mi>G</mi><mo>=</mo><msub><mrow><mi>C</mi></mrow><mrow><msup><mrow><mi>p</mi></mrow><mrow><mi>r</mi></mrow></msup><msup><mrow><mi>q</mi></mrow><mrow><mi>s</mi></mrow></msup></mrow></msub></math></span> and identify conditions when such transfer systems are uniquely compatible in the sense that they only form trivially compatible pairs. This gives us new insight into collections of norm maps that are relevant in equivariant homotopy theory.</div></div>","PeriodicalId":51201,"journal":{"name":"Topology and its Applications","volume":"376 ","pages":"Article 109443"},"PeriodicalIF":0.5,"publicationDate":"2025-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145183875","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Characterization of the OU matrix of a braid diagram 编织图的OU矩阵的表征
IF 0.6 4区 数学
Topology and its Applications Pub Date : 2025-05-27 DOI: 10.1016/j.topol.2025.109440
Ayaka Shimizu , Yoshiro Yaguchi
{"title":"Characterization of the OU matrix of a braid diagram","authors":"Ayaka Shimizu ,&nbsp;Yoshiro Yaguchi","doi":"10.1016/j.topol.2025.109440","DOIUrl":"10.1016/j.topol.2025.109440","url":null,"abstract":"<div><div>The OU matrix of a braid diagram is a square matrix that represents the number of over/under crossings of each pair of strands. In this paper, the OU matrix of a pure braid diagram is characterized for up to 5 strands. As an application, the crossing matrix of a positive pure braid is also characterized for up to 5 strands. Moreover, a standard form of the OU matrix is given and characterized for general braids of up to 5 strands.</div></div>","PeriodicalId":51201,"journal":{"name":"Topology and its Applications","volume":"373 ","pages":"Article 109440"},"PeriodicalIF":0.6,"publicationDate":"2025-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144170288","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Equivariant Witt complexes and twisted topological Hochschild homology 等变Witt配合物与扭曲拓扑Hochschild同调
IF 0.5 4区 数学
Topology and its Applications Pub Date : 2025-05-27 DOI: 10.1016/j.topol.2025.109444
Anna Marie Bohmann , Teena Gerhardt , Cameron Krulewski , Sarah Petersen , Lucy Yang
{"title":"Equivariant Witt complexes and twisted topological Hochschild homology","authors":"Anna Marie Bohmann ,&nbsp;Teena Gerhardt ,&nbsp;Cameron Krulewski ,&nbsp;Sarah Petersen ,&nbsp;Lucy Yang","doi":"10.1016/j.topol.2025.109444","DOIUrl":"10.1016/j.topol.2025.109444","url":null,"abstract":"<div><div>The topological Hochschild homology of a ring (or ring spectrum) <em>R</em> is an <span><math><msup><mrow><mi>S</mi></mrow><mrow><mn>1</mn></mrow></msup></math></span>-spectrum, and the fixed points of <span><math><mi>THH</mi><mo>(</mo><mi>R</mi></math></span>) for subgroups <span><math><msub><mrow><mi>C</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>⊂</mo><msup><mrow><mi>S</mi></mrow><mrow><mn>1</mn></mrow></msup></math></span> have been widely studied due to their use in algebraic <em>K</em>-theory computations. Hesselholt and Madsen proved that the fixed points of topological Hochschild homology are closely related to Witt vectors <span><span>[26]</span></span>. Further, they defined the notion of a Witt complex, and showed that it captures the algebraic structure of the homotopy groups of the fixed points of THH <span><span>[28]</span></span>. Recent work <span><span>[3]</span></span> defines a theory of twisted topological Hochschild homology for equivariant rings (or ring spectra) that builds upon Hill, Hopkins and Ravenel's work on equivariant norms <span><span>[30]</span></span>. In this paper, we study the algebraic structure of the equivariant homotopy groups of twisted THH. In particular, drawing on the definition of equivariant Witt vectors in <span><span>[8]</span></span>, we define an <em>equivariant Witt complex</em> and prove that the equivariant homotopy of twisted THH has this structure. Our definition of equivariant Witt complexes contributes to a growing body of research in the subject of equivariant algebra.</div></div>","PeriodicalId":51201,"journal":{"name":"Topology and its Applications","volume":"376 ","pages":"Article 109444"},"PeriodicalIF":0.5,"publicationDate":"2025-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145183876","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Steenrod operations on polyhedral products 多面体积的Steenrod运算
IF 0.5 4区 数学
Topology and its Applications Pub Date : 2025-05-27 DOI: 10.1016/j.topol.2025.109446
Sanjana Agarwal , Jelena Grbić , Michele Intermont , Milica Jovanović , Evgeniya Lagoda , Sarah Whitehouse
{"title":"Steenrod operations on polyhedral products","authors":"Sanjana Agarwal ,&nbsp;Jelena Grbić ,&nbsp;Michele Intermont ,&nbsp;Milica Jovanović ,&nbsp;Evgeniya Lagoda ,&nbsp;Sarah Whitehouse","doi":"10.1016/j.topol.2025.109446","DOIUrl":"10.1016/j.topol.2025.109446","url":null,"abstract":"<div><div>We describe the action of the mod 2 Steenrod algebra on the cohomology of various polyhedral products and related spaces. We carry this out for Davis-Januszkiewicz spaces and their generalizations, for moment-angle complexes as well as for certain polyhedral joins. By studying the combinatorics of underlying simplicial complexes, we deduce some consequences for the lowest cohomological dimension in which non-trivial Steenrod operations can appear.</div><div>We present a version of cochain-level formulas for Steenrod operations on simplicial complexes. We explain the idea of “propagating” such formulas from a simplicial complex <em>K</em> to polyhedral joins over <em>K</em> and we give examples of this process. We tie the propagation of the Steenrod algebra actions on polyhedral joins to those on moment-angle complexes. Although these are cases where one can understand the Steenrod action via a stable homotopy decomposition, we anticipate applying this method to cases where there is no such decomposition.</div></div>","PeriodicalId":51201,"journal":{"name":"Topology and its Applications","volume":"376 ","pages":"Article 109446"},"PeriodicalIF":0.5,"publicationDate":"2025-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145183851","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Combinatorial structures of the space of Hamiltonian vector fields on compact surfaces 紧曲面上哈密顿向量场空间的组合结构
IF 0.6 4区 数学
Topology and its Applications Pub Date : 2025-05-27 DOI: 10.1016/j.topol.2025.109439
Tomoo Yokoyama
{"title":"Combinatorial structures of the space of Hamiltonian vector fields on compact surfaces","authors":"Tomoo Yokoyama","doi":"10.1016/j.topol.2025.109439","DOIUrl":"10.1016/j.topol.2025.109439","url":null,"abstract":"<div><div>In the time evolution of fluids, the topologies of fluids can be changed by the creations and annihilations of singular points and by switching combinatorial structures of separatrices. In this paper, we construct foundations of descriptions of the time evaluations of fluid phenomena (e.g. Euler equations, Navier-Stokes equations). In particular, we study the combinatorial structure of the “moduli space” of Hamiltonian vector fields. In fact, under the conditions of the non-existence of creations and annihilations of singular points, the space of topological equivalence classes of such Hamiltonian vector fields on compact surfaces has non-contractible connected components and is a disjoint union of finite abstract cell complexes such that the codimension of a cell corresponds to the instability of a Hamiltonian vector field by using combinatorics and simple homotopy theory.</div></div>","PeriodicalId":51201,"journal":{"name":"Topology and its Applications","volume":"373 ","pages":"Article 109439"},"PeriodicalIF":0.6,"publicationDate":"2025-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144189406","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Bounding the K(p − 1)-local exotic Picard group at p > 3 在p > 处限定K(p − 1)-本地奇异皮卡德群3
IF 0.5 4区 数学
Topology and its Applications Pub Date : 2025-05-27 DOI: 10.1016/j.topol.2025.109445
Irina Bobkova , Andrea Lachmann , Ang Li , Alicia Lima , Vesna Stojanoska , Adela YiYu Zhang
{"title":"Bounding the K(p − 1)-local exotic Picard group at p > 3","authors":"Irina Bobkova ,&nbsp;Andrea Lachmann ,&nbsp;Ang Li ,&nbsp;Alicia Lima ,&nbsp;Vesna Stojanoska ,&nbsp;Adela YiYu Zhang","doi":"10.1016/j.topol.2025.109445","DOIUrl":"10.1016/j.topol.2025.109445","url":null,"abstract":"<div><div>In this paper, we bound the descent filtration of the exotic Picard group <span><math><msub><mrow><mi>κ</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span>, for a prime number <span><math><mi>p</mi><mo>&gt;</mo><mn>3</mn></math></span> and <span><math><mi>n</mi><mo>=</mo><mi>p</mi><mo>−</mo><mn>1</mn></math></span>. Our method involves a detailed comparison of the Picard spectral sequence, the homotopy fixed point spectral sequence, and an auxiliary <em>β</em>-inverted homotopy fixed point spectral sequence whose input is the Farrell-Tate cohomology of the Morava stabilizer group. Along the way, we deduce that the <span><math><mi>K</mi><mo>(</mo><mi>n</mi><mo>)</mo></math></span>-local Adams-Novikov spectral sequence for the sphere has a horizontal vanishing line at <span><math><mn>3</mn><msup><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>+</mo><mn>1</mn></math></span> on the <span><math><msub><mrow><mi>E</mi></mrow><mrow><mn>2</mn><msup><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>+</mo><mn>2</mn></mrow></msub></math></span>-page.</div><div>The same analysis also allows us to express the exotic Picard group of <span><math><mi>K</mi><mo>(</mo><mi>n</mi><mo>)</mo></math></span>-local modules over the homotopy fixed points spectrum <span><math><msubsup><mrow><mi>E</mi></mrow><mrow><mi>n</mi></mrow><mrow><mi>h</mi><mi>N</mi></mrow></msubsup></math></span>, where <em>N</em> is the normalizer in <span><math><msub><mrow><mi>G</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> of a finite cyclic subgroup of order <em>p</em>, as a subquotient of a single continuous cohomology group <span><math><msup><mrow><mi>H</mi></mrow><mrow><mn>2</mn><mi>n</mi><mo>+</mo><mn>1</mn></mrow></msup><mo>(</mo><mi>N</mi><mo>,</mo><msub><mrow><mi>π</mi></mrow><mrow><mn>2</mn><mi>n</mi></mrow></msub><msub><mrow><mi>E</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>)</mo></math></span>.</div></div>","PeriodicalId":51201,"journal":{"name":"Topology and its Applications","volume":"376 ","pages":"Article 109445"},"PeriodicalIF":0.5,"publicationDate":"2025-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145183854","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A prop structure on partitions 隔板上的支柱结构
IF 0.5 4区 数学
Topology and its Applications Pub Date : 2025-05-26 DOI: 10.1016/j.topol.2025.109442
Coline Emprin , Dana Hunter , Muriel Livernet , Christine Vespa , Inna Zakharevich
{"title":"A prop structure on partitions","authors":"Coline Emprin ,&nbsp;Dana Hunter ,&nbsp;Muriel Livernet ,&nbsp;Christine Vespa ,&nbsp;Inna Zakharevich","doi":"10.1016/j.topol.2025.109442","DOIUrl":"10.1016/j.topol.2025.109442","url":null,"abstract":"<div><div>Motivated by its link with functor homology, we study the prop freely generated by the operadic suspension of the operad <em>Com</em><span>. We exhibit a particular family of generators, for which the composition and the symmetric group actions admit simple descriptions. We highlight associated subcategories of its Karoubi envelope which allows us to compute extensions groups between simple functors from free groups. We construct a particular prop structure on partitions whose composition corresponds to the Yoneda product of extensions between exterior power functors.</span></div></div>","PeriodicalId":51201,"journal":{"name":"Topology and its Applications","volume":"376 ","pages":"Article 109442"},"PeriodicalIF":0.5,"publicationDate":"2025-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145183651","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信