{"title":"Asymptotic Betti numbers of random subcomplexes","authors":"Nermin Salepci, Jean-Yves Welschinger","doi":"10.1016/j.topol.2025.109476","DOIUrl":"10.1016/j.topol.2025.109476","url":null,"abstract":"<div><div>We prove that the normalized expected Betti numbers of a random subcomplex in the <em>d</em>-th barycentric subdivision of a finite simplicial complex converge to universal limits as <em>d</em> grows to +∞.</div></div>","PeriodicalId":51201,"journal":{"name":"Topology and its Applications","volume":"373 ","pages":"Article 109476"},"PeriodicalIF":0.6,"publicationDate":"2025-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144255193","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Weight, net weight, and elementary submodels","authors":"Alan Dow , István Juhász","doi":"10.1016/j.topol.2025.109469","DOIUrl":"10.1016/j.topol.2025.109469","url":null,"abstract":"<div><div>In this note we prove several theorems that are related to some results and problems from <span><span>[6]</span></span>.</div><div>We answer two of the main questions that were raised in <span><span>[6]</span></span>. First we give a ZFC example of a <em>Hausdorff</em> space in <span><math><mi>C</mi><mo>(</mo><msub><mrow><mi>ω</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>)</mo></math></span> that has uncountable net weight. Then we prove that after adding any number of Cohen reals to a model of CH, in the extension every <em>regular</em> space in <span><math><mi>C</mi><mo>(</mo><msub><mrow><mi>ω</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>)</mo></math></span> has countable net weight.</div><div>In the last section we prove in ZFC the following two statements:</div><div>(i) If <span><math><mi>S</mi><mo>⊂</mo><msub><mrow><mi>ω</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> is stationary then for any <em>regular</em> topology on <em>S</em> of uncountable weight <em>S</em> has a non-stationary subset that has uncountable weight as well.</div><div>(ii) For any topology on <span><math><msub><mrow><mi>ω</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span>, if all final segments of <span><math><msub><mrow><mi>ω</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> have uncountable weight then <span><math><msub><mrow><mi>ω</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> has a non-stationary subset of uncountable weight.</div><div>In contrast to this, it was shown in <span><span>[6]</span></span> that the analogous statements for net weight are not provable in ZFC.</div><div>It is remarkable that all our proofs of the above results make essential use of elementary submodels.</div></div>","PeriodicalId":51201,"journal":{"name":"Topology and its Applications","volume":"373 ","pages":"Article 109469"},"PeriodicalIF":0.6,"publicationDate":"2025-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144204225","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A generating set of Reidemeister moves of oriented virtual knots","authors":"Danish Ali","doi":"10.1016/j.topol.2025.109468","DOIUrl":"10.1016/j.topol.2025.109468","url":null,"abstract":"<div><div>In oriented knot theory, verifying a quantity is an invariant involves checking its invariance under all oriented Reidemeister moves, a process that can be intricate and time-consuming. A generating set of oriented moves simplifies this by requiring verification for only a minimal subset from which all other moves can be derived. While generating sets for classical oriented Reidemeister moves are well-established, their virtual counterparts are less explored. In this study, we enumerate the oriented virtual Reidemeister moves, identifying seventeen distinct moves after accounting for redundancies due to rotational and combinatorial symmetries. We prove that a four-element subset serves as a generating set for these moves. This result offers a streamlined approach to verifying invariants of oriented virtual knots and lays the groundwork for future advancements in virtual knot theory, particularly in the study of invariants and their computational properties.</div></div>","PeriodicalId":51201,"journal":{"name":"Topology and its Applications","volume":"373 ","pages":"Article 109468"},"PeriodicalIF":0.6,"publicationDate":"2025-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144196488","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Reprint of: HFD spaces in two problems of countably compact like properties","authors":"Y.F. Ortiz-Castillo , A.H. Tomita","doi":"10.1016/j.topol.2025.109463","DOIUrl":"10.1016/j.topol.2025.109463","url":null,"abstract":"<div><div>In this article we will construct a consistent space <em>X</em> such that every power smaller than <span><math><msup><mrow><mn>2</mn></mrow><mrow><mi>c</mi></mrow></msup></math></span> of its hyperspace <span><math><mrow><mi>CL</mi></mrow><mo>(</mo><mi>X</mi><mo>)</mo></math></span> is countably compact, but its <span><math><msup><mrow><mn>2</mn></mrow><mrow><mi>c</mi></mrow></msup></math></span>-power is not countably compact. This provides a consistent negative answer to a question from I. Juhász and J. E. Vaughan <span><span>[11]</span></span>. We also give a consistent negative answer to a question from M. Sanchis and A. Tamariz-Mascarúa <span><span>[13]</span></span>.</div></div>","PeriodicalId":51201,"journal":{"name":"Topology and its Applications","volume":"371 ","pages":"Article 109463"},"PeriodicalIF":0.6,"publicationDate":"2025-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144631923","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Reprint of: Finiteness of Dirichlet domains of cusped hyperbolic manifolds","authors":"Hirotaka Akiyoshi","doi":"10.1016/j.topol.2025.109465","DOIUrl":"10.1016/j.topol.2025.109465","url":null,"abstract":"<div><div>A Dirichlet domain is a fundamental domain of a hyperbolic manifold associated to a basepoint. We will prove that there appears only finitely many homotopy classes of Dirichlet domains when the basepoint moves around a hyperbolic manifold of finite volume. It is also proved as a corollary that the number of isotopy classes of Dirichlet domains is finite for manifolds of dimension 2 or 3.</div></div>","PeriodicalId":51201,"journal":{"name":"Topology and its Applications","volume":"371 ","pages":"Article 109465"},"PeriodicalIF":0.6,"publicationDate":"2025-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144631925","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Reprint of: Uniform ψ-separability in iterated function spaces Cp,n(X)","authors":"Joel Aguilar-Velázquez , Reynaldo Rojas-Hernández","doi":"10.1016/j.topol.2025.109464","DOIUrl":"10.1016/j.topol.2025.109464","url":null,"abstract":"<div><div>A function space <span><math><msub><mrow><mi>C</mi></mrow><mrow><mi>p</mi></mrow></msub><mo>(</mo><mi>X</mi><mo>)</mo></math></span> is uniformly <em>ψ</em>-separable if there exists <span><math><mi>B</mi><mo>⊂</mo><mi>C</mi><mo>(</mo><mi>X</mi><mo>)</mo></math></span> such that <em>B</em> is of countable pseudocharacter in the pointwise topology and <em>B</em> is dense in <span><math><mi>C</mi><mo>(</mo><mi>X</mi><mo>)</mo></math></span> with the uniform topology. In this paper we study this property in the iterated function space <span><math><msub><mrow><mi>C</mi></mrow><mrow><mi>p</mi><mo>,</mo><mi>n</mi></mrow></msub><mo>(</mo><mi>X</mi><mo>)</mo></math></span> for <em>X</em> in various special classes of compact spaces. The principal result of this paper is a characterization of when <span><math><msub><mrow><mi>C</mi></mrow><mrow><mi>p</mi><mo>,</mo><mi>n</mi></mrow></msub><mo>(</mo><mi>X</mi><mo>)</mo></math></span> is uniformly <em>ψ</em>-separable for a metrizable space <em>X</em>.</div></div>","PeriodicalId":51201,"journal":{"name":"Topology and its Applications","volume":"371 ","pages":"Article 109464"},"PeriodicalIF":0.6,"publicationDate":"2025-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144631924","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Kenneth L. Baker , Yasuyuki Miyazawa , Kimihiko Motegi
{"title":"Reprint of: Asymptotic behavior of unknotting numbers of links in a twist family","authors":"Kenneth L. Baker , Yasuyuki Miyazawa , Kimihiko Motegi","doi":"10.1016/j.topol.2025.109466","DOIUrl":"10.1016/j.topol.2025.109466","url":null,"abstract":"<div><div>By twisting a given link <em>L</em> along an unknotted circle <em>c</em>, we obtain an infinite family of links <span><math><mo>{</mo><msub><mrow><mi>L</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>}</mo></math></span>. We introduce “stable unknotting number” which describes the asymptotic behavior of unknotting numbers of links in the twist family. We show the stable unknotting number for any twist family of links depends only on the winding number of <em>L</em> about <em>c</em> (the minimum geometric intersection number of <em>L</em> with a Seifert surface of <em>c</em>) and is independent of the wrapping number of <em>L</em> about <em>c</em> (the minimum geometric intersection number of <em>L</em> with a disk bounded by <em>c</em>). Thus there are twist families for which the discrepancy between the wrapping number and the stable unknotting number is arbitrarily large.</div></div>","PeriodicalId":51201,"journal":{"name":"Topology and its Applications","volume":"371 ","pages":"Article 109466"},"PeriodicalIF":0.6,"publicationDate":"2025-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144631936","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Topological dimension of a Reeb graph and a Reeb space","authors":"Irina Gelbukh","doi":"10.1016/j.topol.2025.109462","DOIUrl":"10.1016/j.topol.2025.109462","url":null,"abstract":"<div><div>We give an upper bound for the topological dimension of a Reeb space and a Reeb graph for a wide class of topological spaces and maps. For example, for a compact manifold <em>M</em>, the Reeb graph <span><math><msub><mrow><mi>R</mi></mrow><mrow><mi>f</mi></mrow></msub></math></span> of a continuous function <span><math><mi>f</mi><mspace></mspace><mo>:</mo><mspace></mspace><mi>M</mi><mo>→</mo><mi>R</mi></math></span> satisfies <span><math><mi>dim</mi><mo></mo><msub><mrow><mi>R</mi></mrow><mrow><mi>f</mi></mrow></msub><mo>≤</mo><mn>1</mn></math></span>. For the Reeb space <span><math><msub><mrow><mi>R</mi></mrow><mrow><mi>f</mi></mrow></msub></math></span> of a continuous map <span><math><mi>f</mi><mspace></mspace><mo>:</mo><mspace></mspace><mi>M</mi><mo>→</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span>, it holds <span><math><mi>dim</mi><mo></mo><msub><mrow><mi>R</mi></mrow><mrow><mi>f</mi></mrow></msub><mo>≤</mo><mi>n</mi></math></span>. We also show that without the compactness requirement for <em>M</em>, the topological dimension of the Reeb graph (Reeb space) can be arbitrarily large, even countably infinite.</div></div>","PeriodicalId":51201,"journal":{"name":"Topology and its Applications","volume":"373 ","pages":"Article 109462"},"PeriodicalIF":0.6,"publicationDate":"2025-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144196487","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Separation axioms among US","authors":"Steven Clontz , Marshall Williams","doi":"10.1016/j.topol.2025.109467","DOIUrl":"10.1016/j.topol.2025.109467","url":null,"abstract":"<div><div>A standard introductory result is that Hausdorff spaces have the property US, that is, each convergent sequence has a unique limit. This paper explores several existing and new characterizations of separation axioms that are strictly weaker than <span><math><msub><mrow><mi>T</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> but strictly stronger than US.</div></div>","PeriodicalId":51201,"journal":{"name":"Topology and its Applications","volume":"375 ","pages":"Article 109467"},"PeriodicalIF":0.5,"publicationDate":"2025-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144912536","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Agnès Beaudry , Chloe Lewis , Clover May , Sabrina Pauli , Elizabeth Tatum
{"title":"A guide to equivariant parametrized cohomology","authors":"Agnès Beaudry , Chloe Lewis , Clover May , Sabrina Pauli , Elizabeth Tatum","doi":"10.1016/j.topol.2025.109449","DOIUrl":"10.1016/j.topol.2025.109449","url":null,"abstract":"<div><div>This article investigates equivariant parametrized cellular cohomology, a cohomology theory introduced by Costenoble–Waner for spaces with an action by a compact Lie group <em>G</em>. The theory extends the <span><math><mi>R</mi><mi>O</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span>-graded cohomology of a <em>G</em>-space <em>B</em> to a cohomology graded by <span><math><mi>R</mi><mi>O</mi><mo>(</mo><mi>Π</mi><mi>B</mi><mo>)</mo></math></span>, the representations of the equivariant fundamental groupoid of <em>B</em>. This paper is meant to serve as a guide to this theory and contains some new computations.</div><div>We explain the key ingredients for defining parametrized cellular cohomology when <em>G</em> is a finite group, with particular attention to the case of the cyclic group <span><math><mi>G</mi><mo>=</mo><msub><mrow><mi>C</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>. We compute some examples and observe that <span><math><mi>R</mi><mi>O</mi><mo>(</mo><mi>Π</mi><mi>B</mi><mo>)</mo></math></span> is not always free. When <em>G</em> is the trivial group, we explain how to identify equivariant parametrized cellular cohomology with cellular cohomology in local coefficients. Finally, we illustrate the theory with some new computations of parametrized cellular cohomology for several spaces with <span><math><mi>G</mi><mo>=</mo><msub><mrow><mi>C</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> and <span><math><mi>G</mi><mo>=</mo><msub><mrow><mi>C</mi></mrow><mrow><mn>4</mn></mrow></msub></math></span>.</div></div>","PeriodicalId":51201,"journal":{"name":"Topology and its Applications","volume":"376 ","pages":"Article 109449"},"PeriodicalIF":0.5,"publicationDate":"2025-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145183852","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}