环状刻划正方形的可循环链连续体

IF 0.6 4区 数学 Q3 MATHEMATICS
Ulises Morales-Fuentes , Cristina Villanueva-Segovia
{"title":"环状刻划正方形的可循环链连续体","authors":"Ulises Morales-Fuentes ,&nbsp;Cristina Villanueva-Segovia","doi":"10.1016/j.topol.2025.109379","DOIUrl":null,"url":null,"abstract":"<div><div>Let <em>A</em> denote the annulus <span><math><mo>{</mo><mi>x</mi><mo>∈</mo><msup><mrow><mi>R</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>:</mo><mn>1</mn><mo>≤</mo><mo>|</mo><mo>|</mo><mi>x</mi><mo>|</mo><mo>|</mo><mo>≤</mo><mn>1</mn><mo>+</mo><msqrt><mrow><mn>2</mn></mrow></msqrt><mo>}</mo></math></span>. In this paper we prove that if <em>X</em> is a circularly chainable continuum essentially embedded in <em>A</em>, then <em>X</em> contains the four vertices of an Euclidean square of side length at least <span><math><msqrt><mrow><mn>2</mn></mrow></msqrt></math></span>. Furthermore, let us say that a plane continuum <em>X</em> satisfies the property of annular inscription in <em>A</em> if whenever <em>X</em> is essentially embedded in <em>A</em>, the image of such embedding admits an inscribed square of side length at least <span><math><msqrt><mrow><mn>2</mn></mrow></msqrt></math></span>. We show that every circularly chainable, not chainable plane continuum satisfies the property of annular inscription in <em>A</em> and, moreover, that the property of annular inscription in <em>A</em> is generic among continua that separate the plane.</div></div>","PeriodicalId":51201,"journal":{"name":"Topology and its Applications","volume":"368 ","pages":"Article 109379"},"PeriodicalIF":0.6000,"publicationDate":"2025-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Circularly chainable continua that annularly inscribe squares\",\"authors\":\"Ulises Morales-Fuentes ,&nbsp;Cristina Villanueva-Segovia\",\"doi\":\"10.1016/j.topol.2025.109379\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Let <em>A</em> denote the annulus <span><math><mo>{</mo><mi>x</mi><mo>∈</mo><msup><mrow><mi>R</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>:</mo><mn>1</mn><mo>≤</mo><mo>|</mo><mo>|</mo><mi>x</mi><mo>|</mo><mo>|</mo><mo>≤</mo><mn>1</mn><mo>+</mo><msqrt><mrow><mn>2</mn></mrow></msqrt><mo>}</mo></math></span>. In this paper we prove that if <em>X</em> is a circularly chainable continuum essentially embedded in <em>A</em>, then <em>X</em> contains the four vertices of an Euclidean square of side length at least <span><math><msqrt><mrow><mn>2</mn></mrow></msqrt></math></span>. Furthermore, let us say that a plane continuum <em>X</em> satisfies the property of annular inscription in <em>A</em> if whenever <em>X</em> is essentially embedded in <em>A</em>, the image of such embedding admits an inscribed square of side length at least <span><math><msqrt><mrow><mn>2</mn></mrow></msqrt></math></span>. We show that every circularly chainable, not chainable plane continuum satisfies the property of annular inscription in <em>A</em> and, moreover, that the property of annular inscription in <em>A</em> is generic among continua that separate the plane.</div></div>\",\"PeriodicalId\":51201,\"journal\":{\"name\":\"Topology and its Applications\",\"volume\":\"368 \",\"pages\":\"Article 109379\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2025-03-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Topology and its Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0166864125001774\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Topology and its Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0166864125001774","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

令A表示环{x∈R2:1≤||x||≤1+2}。本文证明了如果X是本质上嵌于a中的一个环链连续体,则X包含边长至少为2的欧几里得正方形的四个顶点。更进一步,我们说平面连续体X满足环形嵌入a的性质,如果当X本质嵌入a时,这种嵌入的像允许一个边长至少为2的内切正方形。证明了每一个可环链的、不可链的平面连续体都满足A中的环刻记性质,并且证明了A中的环刻记性质在分离平面的连续体中是一般的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Circularly chainable continua that annularly inscribe squares
Let A denote the annulus {xR2:1||x||1+2}. In this paper we prove that if X is a circularly chainable continuum essentially embedded in A, then X contains the four vertices of an Euclidean square of side length at least 2. Furthermore, let us say that a plane continuum X satisfies the property of annular inscription in A if whenever X is essentially embedded in A, the image of such embedding admits an inscribed square of side length at least 2. We show that every circularly chainable, not chainable plane continuum satisfies the property of annular inscription in A and, moreover, that the property of annular inscription in A is generic among continua that separate the plane.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.20
自引率
33.30%
发文量
251
审稿时长
6 months
期刊介绍: Topology and its Applications is primarily concerned with publishing original research papers of moderate length. However, a limited number of carefully selected survey or expository papers are also included. The mathematical focus of the journal is that suggested by the title: Research in Topology. It is felt that it is inadvisable to attempt a definitive description of topology as understood for this journal. Certainly the subject includes the algebraic, general, geometric, and set-theoretic facets of topology as well as areas of interactions between topology and other mathematical disciplines, e.g. topological algebra, topological dynamics, functional analysis, category theory. Since the roles of various aspects of topology continue to change, the non-specific delineation of topics serves to reflect the current state of research in topology. At regular intervals, the journal publishes a section entitled Open Problems in Topology, edited by J. van Mill and G.M. Reed. This is a status report on the 1100 problems listed in the book of the same name published by North-Holland in 1990, edited by van Mill and Reed.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信