Mathematical Biosciences最新文献

筛选
英文 中文
The importance of incorporating ventricular–ventricular interaction (VVI) in the study of pulmonary hypertension 将心室-心室相互作用(VVI)纳入肺动脉高压研究的重要性。
IF 1.9 4区 数学
Mathematical Biosciences Pub Date : 2024-06-27 DOI: 10.1016/j.mbs.2024.109242
{"title":"The importance of incorporating ventricular–ventricular interaction (VVI) in the study of pulmonary hypertension","authors":"","doi":"10.1016/j.mbs.2024.109242","DOIUrl":"10.1016/j.mbs.2024.109242","url":null,"abstract":"<div><p>Ventricular ventricular interaction (VVI) affects blood volume and pressure in the right and left ventricles of the heart due to the location and balance of forces on the septal wall separating the ventricles. In healthy patients, the pressure of the left ventricle is considerably higher than the right, resulting in a septal wall that bows into the right ventricle. However, in patients with pulmonary hypertension, the pressure in the right ventricle increases significantly to a point where the pressure is similar to or surpasses that of the left ventricle during portions of the cardiac cycle. For these patients, the septal wall deviates towards the left ventricle, impacting its function. It is possible to study this effect using mathematical modeling, but existing models are nonlinear, leading to a system of algebraic differential equations that can be challenging to solve in patient-specific optimizations of clinical data. This study demonstrates that a simplified linearized model is sufficient to account for the effect of VVI and that, as expected, the impact is significantly more pronounced in patients with pulmonary hypertension.</p></div>","PeriodicalId":51119,"journal":{"name":"Mathematical Biosciences","volume":null,"pages":null},"PeriodicalIF":1.9,"publicationDate":"2024-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141474075","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Interaction intensity in strategic fitness: A quantifying yardstick of selection optimization for evolutionary game 战略适应性中的交互强度:进化博弈选择优化的量化标准
IF 1.9 4区 数学
Mathematical Biosciences Pub Date : 2024-06-25 DOI: 10.1016/j.mbs.2024.109241
Ritesh Kumar Bera , Sourav Rana , Sabyasachi Bhattacharya
{"title":"Interaction intensity in strategic fitness: A quantifying yardstick of selection optimization for evolutionary game","authors":"Ritesh Kumar Bera ,&nbsp;Sourav Rana ,&nbsp;Sabyasachi Bhattacharya","doi":"10.1016/j.mbs.2024.109241","DOIUrl":"10.1016/j.mbs.2024.109241","url":null,"abstract":"<div><p>The notion of the fitness of a strategy has been assimilated as the reproductive success in the evolutionary game. Initially, this fitness was tied to the game’s pay-off and the strategy’s relative frequency. However, density dependence becomes exigent in order to make ecologically reliable fitness. However, the contributions of each different type of interaction to the species’s overall growth process were surprisingly under-explored. This oversight has occasionally led to either more or less prediction of strategy selection compared to the actual possibility. Moreover, density regulation of the population has always been analysed in a general way compared to strategy selection. In this context, our study introduces the concept of mean relative death payoff, which helps in assessing interaction intensity coefficients and integrates them into strategic fitness. Based on this fitness function, we develop the frequency-density replicator dynamics, which eventually provides distinguishing criteria for directional and balancing selection. Our optimized, evolutionarily stable strategy emerges as a superior alternative to the conventional trade-off between selection forces and ecological processes. More significantly, mean relative death pay-off has both conditional and quantitative roles in getting a stable population size. As a case study, we have extensively analysed the evolution of aggression using the Hawk-Dove game. We have shown that pure Dove selection is always beneficial for species growth rather than pure Hawk selection, and the condition of selection is dependent on external mortality pressure. However, the condition of coexistence is independent of external mortality pressure, representing a strong evolutionary selection that optimizes population density governed by interaction intensity.</p></div>","PeriodicalId":51119,"journal":{"name":"Mathematical Biosciences","volume":null,"pages":null},"PeriodicalIF":1.9,"publicationDate":"2024-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141474074","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An SEIR network epidemic model with manual and digital contact tracing allowing delays SEIR 网络流行病模型,采用人工和数字接触追踪技术,允许延迟。
IF 1.9 4区 数学
Mathematical Biosciences Pub Date : 2024-06-22 DOI: 10.1016/j.mbs.2024.109231
Dongni Zhang, Tom Britton
{"title":"An SEIR network epidemic model with manual and digital contact tracing allowing delays","authors":"Dongni Zhang,&nbsp;Tom Britton","doi":"10.1016/j.mbs.2024.109231","DOIUrl":"10.1016/j.mbs.2024.109231","url":null,"abstract":"<div><p>We consider an SEIR epidemic model on a network also allowing random contacts, where recovered individuals could either recover naturally or be diagnosed. Upon diagnosis, manual contact tracing is triggered such that each infected network contact is reported, tested and isolated with some probability and after a random delay. Additionally, digital tracing (based on a tracing app) is triggered if the diagnosed individual is an app-user, and then all of its app-using infectees are immediately notified and isolated. The early phase of the epidemic with manual and/or digital tracing is approximated by different multi-type branching processes, and three respective reproduction numbers are derived. The effectiveness of both contact tracing mechanisms is numerically quantified through the reduction of the reproduction number. This shows that app-using fraction plays an essential role in the overall effectiveness of contact tracing. The relative effectiveness of manual tracing compared to digital tracing increases if: more of the transmission occurs on the network, when the tracing delay is shortened, and when the network degree distribution is heavy-tailed. For realistic values, the combined tracing case can reduce <span><math><msub><mrow><mi>R</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span> by 20%–30%, so other preventive measures are needed to reduce the reproduction number down to 1.2–1.4 for contact tracing to make it successful in avoiding big outbreaks.</p></div>","PeriodicalId":51119,"journal":{"name":"Mathematical Biosciences","volume":null,"pages":null},"PeriodicalIF":1.9,"publicationDate":"2024-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0025556424000919/pdfft?md5=3a0b6adddf3a6a1418dab08354dd9ca3&pid=1-s2.0-S0025556424000919-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141447920","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Dynamic analysis of a drug resistance evolution model with nonlinear immune response 具有非线性免疫反应的耐药性演变模型的动态分析。
IF 1.9 4区 数学
Mathematical Biosciences Pub Date : 2024-06-19 DOI: 10.1016/j.mbs.2024.109239
Tengfei Wang, Xiufen Zou
{"title":"Dynamic analysis of a drug resistance evolution model with nonlinear immune response","authors":"Tengfei Wang,&nbsp;Xiufen Zou","doi":"10.1016/j.mbs.2024.109239","DOIUrl":"10.1016/j.mbs.2024.109239","url":null,"abstract":"<div><p>Recent studies have utilized evolutionary mechanisms to impede the emergence of drug-resistant populations. In this paper, we develop a mathematical model that integrates hormonal treatment, immunotherapy, and the interactions among three cell types: drug-sensitive cancer cells, drug-resistant cancer cells and immune effector cells. Dynamical analysis is performed, examining the existence and stability of equilibria, thereby confirming the model’s interpretability. Model parameters are calibrated using available prostate cancer data and literature. Through bifurcation analysis for drug sensitivity under different immune effector cells recruitment responses, we find that resistant cancer cells grow rapidly under weak recruitment response, maintain at a low level under strong recruitment response, and both may occur under moderate recruitment response. To quantify the competitiveness of sensitive and resistant cells, we introduce the comprehensive measures <span><math><msub><mrow><mi>R</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> and <span><math><msub><mrow><mi>R</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>, respectively, which determine the outcome of competition. Additionally, we introduce the quantitative indicators <span><math><mrow><mi>C</mi><mi>I</mi><msub><mrow><mi>E</mi></mrow><mrow><mn>1</mn></mrow></msub></mrow></math></span> and <span><math><mrow><mi>C</mi><mi>I</mi><msub><mrow><mi>E</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow></math></span> as comprehensive measures of the immune effects on sensitive and resistant cancer cells, respectively. These two indicators determine whether the corresponding cancer cells can maintain at a low level. Our work shows that the immune system is an important factor affecting the evolution of drug resistance and provides insights into how to enhance immune response to control resistance.</p></div>","PeriodicalId":51119,"journal":{"name":"Mathematical Biosciences","volume":null,"pages":null},"PeriodicalIF":1.9,"publicationDate":"2024-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141437969","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Phenotypic switching mechanisms determine the structure of cell migration into extracellular matrix under the ‘go-or-grow’ hypothesis 表型转换机制决定了 "要么走要么长 "假说下细胞向细胞外基质迁移的结构。
IF 1.9 4区 数学
Mathematical Biosciences Pub Date : 2024-06-19 DOI: 10.1016/j.mbs.2024.109240
Rebecca M. Crossley , Kevin J. Painter , Tommaso Lorenzi , Philip K. Maini , Ruth E. Baker
{"title":"Phenotypic switching mechanisms determine the structure of cell migration into extracellular matrix under the ‘go-or-grow’ hypothesis","authors":"Rebecca M. Crossley ,&nbsp;Kevin J. Painter ,&nbsp;Tommaso Lorenzi ,&nbsp;Philip K. Maini ,&nbsp;Ruth E. Baker","doi":"10.1016/j.mbs.2024.109240","DOIUrl":"10.1016/j.mbs.2024.109240","url":null,"abstract":"<div><p>A fundamental feature of collective cell migration is phenotypic heterogeneity which, for example, influences tumour progression and relapse. While current mathematical models often consider discrete phenotypic structuring of the cell population, in-line with the ‘go-or-grow’ hypothesis (Hatzikirou et al., 2012; Stepien et al., 2018), they regularly overlook the role that the environment may play in determining the cells’ phenotype during migration. Comparing a previously studied volume-filling model for a homogeneous population of generalist cells that can proliferate, move and degrade extracellular matrix (ECM) (Crossley et al., 2023) to a novel model for a heterogeneous population comprising two distinct sub-populations of specialist cells that can either move and degrade ECM or proliferate, this study explores how different hypothetical phenotypic switching mechanisms affect the speed and structure of the invading cell populations. Through a continuum model derived from its individual-based counterpart, insights into the influence of the ECM and the impact of phenotypic switching on migrating cell populations emerge. Notably, specialist cell populations that cannot switch phenotype show reduced invasiveness compared to generalist cell populations, while implementing different forms of switching significantly alters the structure of migrating cell fronts. This key result suggests that the structure of an invading cell population could be used to infer the underlying mechanisms governing phenotypic switching.</p></div>","PeriodicalId":51119,"journal":{"name":"Mathematical Biosciences","volume":null,"pages":null},"PeriodicalIF":1.9,"publicationDate":"2024-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0025556424001007/pdfft?md5=208ba32a25203ef216e181782adc1ba5&pid=1-s2.0-S0025556424001007-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141437970","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Lattice structures that parameterize regulatory network dynamics 调控网络动态参数化的晶格结构。
IF 4.3 4区 数学
Mathematical Biosciences Pub Date : 2024-06-10 DOI: 10.1016/j.mbs.2024.109225
Tomáš Gedeon
{"title":"Lattice structures that parameterize regulatory network dynamics","authors":"Tomáš Gedeon","doi":"10.1016/j.mbs.2024.109225","DOIUrl":"10.1016/j.mbs.2024.109225","url":null,"abstract":"<div><p>We consider two types of models of regulatory network dynamics: Boolean maps and systems of switching ordinary differential equations. Our goal is to construct all models in each category that are compatible with the directed signed graph that describe the network interactions. This leads to consideration of lattice of monotone Boolean functions (MBF), poset of non-degenerate MBFs, and a lattice of chains in these sets. We describe explicit inductive construction of these posets where the induction is on the number of inputs in MBF.</p><p>Our results allow enumeration of potential dynamic behavior of the network for both model types, subject to practical limitation imposed by the size of the lattice of MBFs described by the Dedekind number.</p></div>","PeriodicalId":51119,"journal":{"name":"Mathematical Biosciences","volume":null,"pages":null},"PeriodicalIF":4.3,"publicationDate":"2024-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141312612","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Modelling the role of enzymatic pathways in the metabolism of docosahexaenoic acid by monocytes and its association with osteoarthritic pain 模拟单核细胞代谢二十二碳六烯酸过程中酶途径的作用及其与骨关节炎疼痛的关系。
IF 4.3 4区 数学
Mathematical Biosciences Pub Date : 2024-06-06 DOI: 10.1016/j.mbs.2024.109228
S.J. Franks , P.R.W. Gowler , J.L. Dunster , J. Turnbull , S.A. Gohir , A. Kelly , A.M. Valdes , J.R. King , D.A. Barrett , V. Chapman , S. Preston
{"title":"Modelling the role of enzymatic pathways in the metabolism of docosahexaenoic acid by monocytes and its association with osteoarthritic pain","authors":"S.J. Franks ,&nbsp;P.R.W. Gowler ,&nbsp;J.L. Dunster ,&nbsp;J. Turnbull ,&nbsp;S.A. Gohir ,&nbsp;A. Kelly ,&nbsp;A.M. Valdes ,&nbsp;J.R. King ,&nbsp;D.A. Barrett ,&nbsp;V. Chapman ,&nbsp;S. Preston","doi":"10.1016/j.mbs.2024.109228","DOIUrl":"10.1016/j.mbs.2024.109228","url":null,"abstract":"<div><p>Chronic pain is a major cause of disability and suffering in osteoarthritis (OA) patients. Endogenous specialised pro-resolving molecules (SPMs) curtail pro-inflammatory responses. One of the SPM intermediate oxylipins, 17-hydroxydocasahexaenoic acid (17-HDHA, a metabolite of docosahexaenoic acid (DHA)), is significantly associated with OA pain. The aim of this multidisciplinary work is to develop a mathematical model to describe the contributions of enzymatic pathways (and the genes that encode them) to the metabolism of DHA by monocytes and to the levels of the down-stream metabolites, 17-HDHA and 14-hydroxydocasahexaenoic acid (14-HDHA), motivated by novel clinical data from a study involving 30 participants with OA. The data include measurements of oxylipin levels, mRNA levels, measures of OA severity and self-reported pain scores.</p><p>We propose a system of ordinary differential equations to characterise associations between the different datasets, in order to determine the homeostatic concentrations of DHA, 17-HDHA and 14-HDHA, dependent upon the gene expression of the associated metabolic enzymes. Using parameter-fitting methods, local sensitivity and uncertainty analysis, the model is shown to fit well qualitatively to experimental data.</p><p>The model suggests that up-regulation of some ALOX genes may lead to the down-regulation of 17-HDHA and that dosing with 17-HDHA increases the production of resolvins, which helps to down-regulate the inflammatory response. More generally, we explore the challenges and limitations of modelling real data, in particular individual variability, and also discuss the value of gathering additional experimental data motivated by the modelling insights.</p></div>","PeriodicalId":51119,"journal":{"name":"Mathematical Biosciences","volume":null,"pages":null},"PeriodicalIF":4.3,"publicationDate":"2024-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0025556424000889/pdfft?md5=71cda2aac8c13e15bf2dce58498eec4e&pid=1-s2.0-S0025556424000889-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141294093","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Modeling the distribution of enzymes on lipid vesicles: A novel framework for surface-mediated reactions in coagulation 模拟酶在脂质囊泡上的分布:凝结过程中表面介导反应的新框架。
IF 4.3 4区 数学
Mathematical Biosciences Pub Date : 2024-06-06 DOI: 10.1016/j.mbs.2024.109229
Jamie Madrigal , Dougald M. Monroe , Suzanne S. Sindi , Karin Leiderman
{"title":"Modeling the distribution of enzymes on lipid vesicles: A novel framework for surface-mediated reactions in coagulation","authors":"Jamie Madrigal ,&nbsp;Dougald M. Monroe ,&nbsp;Suzanne S. Sindi ,&nbsp;Karin Leiderman","doi":"10.1016/j.mbs.2024.109229","DOIUrl":"10.1016/j.mbs.2024.109229","url":null,"abstract":"<div><p>Blood coagulation is a network of biochemical reactions wherein dozens of proteins act collectively to initiate a rapid clotting response. Coagulation reactions are lipid-surface dependent, and this dependence is thought to help localize coagulation to the site of injury and enhance the association between reactants. Current mathematical models of coagulation either do not consider lipid as a variable or do not agree with experiments where lipid concentrations were varied. Since there is no analytic rate law that depends on lipid, only apparent rate constants can be derived from enzyme kinetic experiments. We developed a new mathematical framework for modeling enzymes reactions in the presence of lipid vesicles. Here the concentrations are such that only a fraction of the vesicles harbor bound enzymes and the rest remain empty. We call the lipid vesicles with and without enzyme TF:VIIa<span><math><msup><mrow></mrow><mrow><mo>+</mo></mrow></msup></math></span> and TF:VIIa<span><math><msup><mrow></mrow><mrow><mo>−</mo></mrow></msup></math></span> lipid, respectively. Since substrate binds to both TF:VIIa<span><math><msup><mrow></mrow><mrow><mo>+</mo></mrow></msup></math></span> and TF:VIIa<span><math><msup><mrow></mrow><mrow><mo>−</mo></mrow></msup></math></span> lipid, our model shows that excess empty lipid acts as a strong sink for substrate. We used our framework to derive an analytic rate equation and performed constrained optimization to estimate a single, global set of intrinsic rates for the enzyme–substrate pair. Results agree with experiments and reveal a critical lipid concentration where the conversion rate of the substrate is maximized, a phenomenon known as the template effect. Next, we included product inhibition of the enzyme and derived the corresponding rate equations, which enables kinetic studies of more complex reactions. Our combined experimental and mathematical study provides a general framework for uncovering the mechanisms by which lipid mediated reactions impact coagulation processes.</p></div>","PeriodicalId":51119,"journal":{"name":"Mathematical Biosciences","volume":null,"pages":null},"PeriodicalIF":4.3,"publicationDate":"2024-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141294091","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Modeling the impact of non-human host predation on the transmission of Chagas disease 模拟非人类宿主捕食对南美锥虫病传播的影响。
IF 4.3 4区 数学
Mathematical Biosciences Pub Date : 2024-06-06 DOI: 10.1016/j.mbs.2024.109230
Xuan Dai , Xiaotian Wu , Jiao Jiang , Libin Rong
{"title":"Modeling the impact of non-human host predation on the transmission of Chagas disease","authors":"Xuan Dai ,&nbsp;Xiaotian Wu ,&nbsp;Jiao Jiang ,&nbsp;Libin Rong","doi":"10.1016/j.mbs.2024.109230","DOIUrl":"10.1016/j.mbs.2024.109230","url":null,"abstract":"<div><p>In addition to the traditional transmission route via the biting-and-defecating process, non-human host predation of triatomines is recognized as another significant avenue for Chagas disease transmission. In this paper, we develop an eco-epidemiological model to investigate the impact of predation on the disease’s spread. Two critical thresholds, <span><math><msubsup><mrow><mi>R</mi></mrow><mrow><mi>v</mi></mrow><mrow><mi>p</mi></mrow></msubsup></math></span> (the basic reproduction number of triatomines) and <span><math><msubsup><mrow><mi>R</mi></mrow><mrow><mn>0</mn></mrow><mrow><mi>p</mi></mrow></msubsup></math></span> (the basic reproduction number of the Chagas parasite), are derived to delineate the model’s dynamics. Through the construction of appropriate Lyapunov functions and the application of the Bendixson–Dulac theorem, the global asymptotic stabilities of the equilibria are fully established. The vector-free equilibrium <span><math><msub><mrow><mi>E</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span> is globally stable when <span><math><mrow><msubsup><mrow><mi>R</mi></mrow><mrow><mi>v</mi></mrow><mrow><mi>p</mi></mrow></msubsup><mo>&lt;</mo><mn>1</mn></mrow></math></span>. <span><math><msub><mrow><mi>E</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span>, the disease-free equilibrium, is globally stable when <span><math><mrow><msubsup><mrow><mi>R</mi></mrow><mrow><mi>v</mi></mrow><mrow><mi>p</mi></mrow></msubsup><mo>&gt;</mo><mn>1</mn></mrow></math></span> and <span><math><mrow><msubsup><mrow><mi>R</mi></mrow><mrow><mn>0</mn></mrow><mrow><mi>p</mi></mrow></msubsup><mo>&lt;</mo><mn>1</mn></mrow></math></span>, while the endemic equilibrium <span><math><msup><mrow><mi>E</mi></mrow><mrow><mo>∗</mo></mrow></msup></math></span> is globally stable when both <span><math><mrow><msubsup><mrow><mi>R</mi></mrow><mrow><mi>v</mi></mrow><mrow><mi>p</mi></mrow></msubsup><mo>&gt;</mo><mn>1</mn></mrow></math></span> and <span><math><mrow><msubsup><mrow><mi>R</mi></mrow><mrow><mn>0</mn></mrow><mrow><mi>p</mi></mrow></msubsup><mo>&gt;</mo><mn>1</mn></mrow></math></span>. Numerical simulations highlight that the degree of host predation on triatomines, influenced by non-human hosts activities, can variably increase or decrease the Chagas disease transmission risk. Specifically, low or high levels of host predation can reduce <span><math><msubsup><mrow><mi>R</mi></mrow><mrow><mn>0</mn></mrow><mrow><mi>p</mi></mrow></msubsup></math></span> to below unity, while intermediate levels may increase the infected host populations, albeit with a reduction in <span><math><msubsup><mrow><mi>R</mi></mrow><mrow><mn>0</mn></mrow><mrow><mi>p</mi></mrow></msubsup></math></span>. These findings highlight the role played by non-human hosts and offer crucial insights for the prevention and control of Chagas disease.</p></div>","PeriodicalId":51119,"journal":{"name":"Mathematical Biosciences","volume":null,"pages":null},"PeriodicalIF":4.3,"publicationDate":"2024-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141294092","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A systematic review of mathematical models of Lassa fever 拉沙热数学模型的系统回顾。
IF 4.3 4区 数学
Mathematical Biosciences Pub Date : 2024-06-04 DOI: 10.1016/j.mbs.2024.109227
Praise-God Uchechukwu Madueme, Faraimunashe Chirove
{"title":"A systematic review of mathematical models of Lassa fever","authors":"Praise-God Uchechukwu Madueme,&nbsp;Faraimunashe Chirove","doi":"10.1016/j.mbs.2024.109227","DOIUrl":"10.1016/j.mbs.2024.109227","url":null,"abstract":"<div><p>This systematic review, conducted following the PRISMA guidelines, scrutinizes mathematical models employed in the study of Lassa fever. The analysis revealed the inherent heterogeneity in both models and data, posing significant challenges to parameter estimation. While health and behavioral interventions exhibit promise in mitigating the disease’s spread, their efficacy is contingent upon contextual factors. Identified through this review are critical gaps, limitations, and avenues for future research, necessitating increased harmonization and standardization in modeling approaches. The considerations of seasonal and spatial variations emerge as crucial elements demanding targeted investigation. The perpetual threat of emerging diseases, coupled with the enduring public health impact of Lassa fever, underscores the imperative for sustained research endeavors and investments in mathematical modeling. The conclusion underscored that while mathematical modeling remains an invaluable tool in the combat against Lassa fever, its optimal utilization mandates multidisciplinary collaboration, refined data collection methodologies, and an enriched understanding of the intricate disease dynamics. This comprehensive approach is essential for effectively reducing the burden of Lassa fever and safeguarding the health of vulnerable populations.</p></div>","PeriodicalId":51119,"journal":{"name":"Mathematical Biosciences","volume":null,"pages":null},"PeriodicalIF":4.3,"publicationDate":"2024-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0025556424000877/pdfft?md5=ea7fe5fa53850c90a5fb265f12c6a8af&pid=1-s2.0-S0025556424000877-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141285759","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信