神经母细胞向嗅球迁移的数学模型

IF 1.8 4区 数学 Q2 BIOLOGY
Daniel Acosta-Soba , Carmen Castro , Noelia Geribaldi-Doldán , Francisco Guillén-González , Pedro Nunez-Abades , Noelia Ortega-Román , Patricia Pérez-García , J. Rafael Rodríguez-Galván
{"title":"神经母细胞向嗅球迁移的数学模型","authors":"Daniel Acosta-Soba ,&nbsp;Carmen Castro ,&nbsp;Noelia Geribaldi-Doldán ,&nbsp;Francisco Guillén-González ,&nbsp;Pedro Nunez-Abades ,&nbsp;Noelia Ortega-Román ,&nbsp;Patricia Pérez-García ,&nbsp;J. Rafael Rodríguez-Galván","doi":"10.1016/j.mbs.2025.109446","DOIUrl":null,"url":null,"abstract":"<div><div>This article is devoted to the mathematical modeling of the migration of neuroblasts, precursor cells of neurons, along the Rostral Migratory Stream (RMS), the pathway they usually follow before maturing. According to our model, this way is determined mainly by attraction forces to the olfactory bulb, and also by the heterogeneous mobility of neuroblasts in different regions of the brain. Carefully identifying them as solutions to partial differential equations allows us to determine the movement of neuroblasts along the RMS in a realistic fashion. For solving the equations we develop numerical schemes where the application of novel discontinuous Galerkin methods allows to maintain the properties of the continuous model such as the maximum principle. We present some successful computer tests including parameter adjustment to fit real data from rodent brains.</div></div>","PeriodicalId":51119,"journal":{"name":"Mathematical Biosciences","volume":"385 ","pages":"Article 109446"},"PeriodicalIF":1.8000,"publicationDate":"2025-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mathematical modeling of neuroblast migration toward the olfactory bulb\",\"authors\":\"Daniel Acosta-Soba ,&nbsp;Carmen Castro ,&nbsp;Noelia Geribaldi-Doldán ,&nbsp;Francisco Guillén-González ,&nbsp;Pedro Nunez-Abades ,&nbsp;Noelia Ortega-Román ,&nbsp;Patricia Pérez-García ,&nbsp;J. Rafael Rodríguez-Galván\",\"doi\":\"10.1016/j.mbs.2025.109446\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This article is devoted to the mathematical modeling of the migration of neuroblasts, precursor cells of neurons, along the Rostral Migratory Stream (RMS), the pathway they usually follow before maturing. According to our model, this way is determined mainly by attraction forces to the olfactory bulb, and also by the heterogeneous mobility of neuroblasts in different regions of the brain. Carefully identifying them as solutions to partial differential equations allows us to determine the movement of neuroblasts along the RMS in a realistic fashion. For solving the equations we develop numerical schemes where the application of novel discontinuous Galerkin methods allows to maintain the properties of the continuous model such as the maximum principle. We present some successful computer tests including parameter adjustment to fit real data from rodent brains.</div></div>\",\"PeriodicalId\":51119,\"journal\":{\"name\":\"Mathematical Biosciences\",\"volume\":\"385 \",\"pages\":\"Article 109446\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2025-04-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical Biosciences\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0025556425000720\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Biosciences","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0025556425000720","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

本文致力于神经母细胞(神经元的前体细胞)沿吻侧迁移流(RMS)迁移的数学模型,这是它们在成熟之前通常遵循的途径。根据我们的模型,这种方式主要由嗅球的吸引力决定,也由大脑不同区域的神经母细胞的异质性流动性决定。仔细地将它们识别为偏微分方程的解,使我们能够以一种现实的方式确定神经母细胞沿着RMS的运动。为了求解这些方程,我们开发了数值格式,其中应用新的不连续伽辽金方法可以保持连续模型的性质,如极大值原理。我们提出了一些成功的计算机测试,包括参数调整以适应啮齿动物大脑的真实数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Mathematical modeling of neuroblast migration toward the olfactory bulb
This article is devoted to the mathematical modeling of the migration of neuroblasts, precursor cells of neurons, along the Rostral Migratory Stream (RMS), the pathway they usually follow before maturing. According to our model, this way is determined mainly by attraction forces to the olfactory bulb, and also by the heterogeneous mobility of neuroblasts in different regions of the brain. Carefully identifying them as solutions to partial differential equations allows us to determine the movement of neuroblasts along the RMS in a realistic fashion. For solving the equations we develop numerical schemes where the application of novel discontinuous Galerkin methods allows to maintain the properties of the continuous model such as the maximum principle. We present some successful computer tests including parameter adjustment to fit real data from rodent brains.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Mathematical Biosciences
Mathematical Biosciences 生物-生物学
CiteScore
7.50
自引率
2.30%
发文量
67
审稿时长
18 days
期刊介绍: Mathematical Biosciences publishes work providing new concepts or new understanding of biological systems using mathematical models, or methodological articles likely to find application to multiple biological systems. Papers are expected to present a major research finding of broad significance for the biological sciences, or mathematical biology. Mathematical Biosciences welcomes original research articles, letters, reviews and perspectives.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信