{"title":"Modeling correlated uncertainties in stochastic compartmental models","authors":"Konstantinos Mamis , Mohammad Farazmand","doi":"10.1016/j.mbs.2024.109226","DOIUrl":"10.1016/j.mbs.2024.109226","url":null,"abstract":"<div><p>We consider compartmental models of communicable disease with uncertain contact rates. Stochastic fluctuations are often added to the contact rate to account for uncertainties. White noise, which is the typical choice for the fluctuations, leads to significant underestimation of the disease severity. Here, starting from reasonable assumptions on the social behavior of individuals, we model the contacts as a Markov process which takes into account the temporal correlations present in human social activities. Consequently, we show that the mean-reverting Ornstein–Uhlenbeck (OU) process is the correct model for the stochastic contact rate. We demonstrate the implication of our model on two examples: a Susceptibles–Infected–Susceptibles (SIS) model and a Susceptibles–Exposed–Infected–Removed (SEIR) model of the COVID-19 pandemic and compare the results to the available US data from the Johns Hopkins University database. In particular, we observe that both compartmental models with white noise uncertainties undergo transitions that lead to the systematic underestimation of the spread of the disease. In contrast, modeling the contact rate with the OU process significantly hinders such unrealistic noise-induced transitions. For the SIS model, we derive its stationary probability density analytically, for both white and correlated noise. This allows us to give a complete description of the model’s asymptotic behavior as a function of its bifurcation parameters, i.e., the basic reproduction number, noise intensity, and correlation time. For the SEIR model, where the probability density is not available in closed form, we study the transitions using Monte Carlo simulations. Our modeling approach can be used to quantify uncertain parameters in a broad range of biological systems.</p></div>","PeriodicalId":51119,"journal":{"name":"Mathematical Biosciences","volume":null,"pages":null},"PeriodicalIF":4.3,"publicationDate":"2024-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141263668","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Emergence of non-trivial solutions from trivial solutions in reaction–diffusion equations for pattern formation","authors":"Xinyue Evelyn Zhao , Wenrui Hao","doi":"10.1016/j.mbs.2024.109222","DOIUrl":"10.1016/j.mbs.2024.109222","url":null,"abstract":"<div><p>Reaction–diffusion equations serve as fundamental tools in describing pattern formation in biology. In these models, nonuniform steady states often represent stationary spatial patterns. Notably, these steady states are not unique, and unveiling them mathematically presents challenges. In this paper, we introduce a framework based on bifurcation theory to address pattern formation problems, specifically examining whether nonuniform steady states can bifurcate from trivial ones. Furthermore, we employ linear stability analysis to investigate the stability of the trivial steady-state solutions. We apply the method to two classic reaction–diffusion models: the Schnakenberg model and the Gray–Scott model. For both models, our approach effectively reveals many nonuniform steady states and assesses the stability of the trivial solution. Numerical computations are also presented to validate the solution structures for these models.</p></div>","PeriodicalId":51119,"journal":{"name":"Mathematical Biosciences","volume":null,"pages":null},"PeriodicalIF":4.3,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141238960","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Murat An , Mesut Akyuz , Ozel Capik , Cigdem Yalcin , Richard Bertram , Elanur Aydin Karatas , Omer Faruk Karatas , Vehpi Yildirim
{"title":"Gain of function mutation in K(ATP) channels and resulting upregulation of coupling conductance are partners in crime in the impairment of Ca2+ oscillations in pancreatic ß-cells","authors":"Murat An , Mesut Akyuz , Ozel Capik , Cigdem Yalcin , Richard Bertram , Elanur Aydin Karatas , Omer Faruk Karatas , Vehpi Yildirim","doi":"10.1016/j.mbs.2024.109224","DOIUrl":"10.1016/j.mbs.2024.109224","url":null,"abstract":"<div><p>Gain of function mutations in the pore forming Kir6 subunits of the ATP sensitive K<sup>+</sup> channels (K(ATP) channels) of pancreatic β-cells are the major cause of neonatal diabetes in humans. In this study, we show that in insulin secreting mouse β-cell lines, gain of function mutations in Kir6.1 result in a significant connexin36 (Cx36) overexpression, which form gap junctional connections and mediate electrical coupling between β-cells within pancreatic islets. Using computational modeling, we show that upregulation in Cx36 might play a functional role in the impairment of glucose stimulated Ca<sup>2+</sup> oscillations in a cluster of β-cells with Kir6.1 gain of function mutations in their K(ATP) channels (GoF-K(ATP) channels). Our results show that without an increase in Cx36 expression, a gain of function mutation in Kir6.1 might not be sufficient to diminish glucose stimulated Ca<sup>2+</sup> oscillations in a β-cell cluster. We also show that a reduced Cx36 expression, which leads to loss of coordination in a wild-type β-cell cluster, restores coordinated Ca<sup>2+</sup> oscillations in a β-cell cluster with GoF-K(ATP) channels. Our results indicate that in a heterogenous β-cell cluster with GoF-K(ATP) channels, there is an inverted u-shaped nonmonotonic relation between the cluster activity and Cx36 expression. These results show that in a neonatal diabetic β-cell model, gain of function mutations in the Kir6.1 cause Cx36 overexpression, which aggravates the impairment of glucose stimulated Ca<sup>2+</sup> oscillations.</p></div>","PeriodicalId":51119,"journal":{"name":"Mathematical Biosciences","volume":null,"pages":null},"PeriodicalIF":4.3,"publicationDate":"2024-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0025556424000841/pdfft?md5=e53a8ca09d9411206ab239b53d8e5aab&pid=1-s2.0-S0025556424000841-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141184857","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"From economic threshold to economic injury level: Modeling the residual effect and delayed response of pesticide application","authors":"Huan Yang , Yuanshun Tan , Sanyi Tang","doi":"10.1016/j.mbs.2024.109223","DOIUrl":"10.1016/j.mbs.2024.109223","url":null,"abstract":"<div><p>Integrated Pest Management (IPM) poses a challenge in determining the optimal timing of pesticide sprays to ensure that pest populations remain below the Economic Injury Level (EIL), due to the long-term residual effects of many pesticides and the delayed responses of pest populations to pesticide sprays. To address this issue, a specific pesticide kill-rate function is incorporated into a deterministic exponential growth model and a subsequent stochastic model. The findings suggest the existence of an optimal pesticide spraying cycle that can periodically control pests below the EIL. The results regarding stochasticity indicate that random fluctuations promote pest extinction and ensure that the pest population, under the optimal cycle, does not exceed the EIL on average, even with a finite number of IPM strategies. All those confirm that the modeling approach can accurately reveal the intrinsic relationship between the two key indicators Economic Threshold and EIL in the IPM strategy, and further realize the precise characterization of the residual effect and delayed response of pesticide application.</p></div>","PeriodicalId":51119,"journal":{"name":"Mathematical Biosciences","volume":null,"pages":null},"PeriodicalIF":4.3,"publicationDate":"2024-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141184828","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Timothy J. Pervenecki , Sharon Bewick , Garrett Otto , William F. Fagan , Bingtuan Li
{"title":"Allee effects introduced by density dependent phenology","authors":"Timothy J. Pervenecki , Sharon Bewick , Garrett Otto , William F. Fagan , Bingtuan Li","doi":"10.1016/j.mbs.2024.109221","DOIUrl":"10.1016/j.mbs.2024.109221","url":null,"abstract":"<div><p>We consider a hybrid model of an annual species with the timing of a stage transition governed by density dependent phenology. We show that the model can produce a strong Allee effect as well as overcompensation. The density dependent probability distribution that describes how population emergence is spread over time plays an important role in determining population dynamics. Our extensive numerical simulations with a density dependent gamma distribution indicate very rich population dynamics, from stable/unstable equilibria, limit cycles, to chaos.</p></div>","PeriodicalId":51119,"journal":{"name":"Mathematical Biosciences","volume":null,"pages":null},"PeriodicalIF":4.3,"publicationDate":"2024-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141156003","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Xiaoyue Yuan , Wenjun Liu , Guangying Lv , Ali Moussaoui , Pierre Auger
{"title":"Sustainable management of predatory fish affected by an Allee effect through marine protected areas and taxation","authors":"Xiaoyue Yuan , Wenjun Liu , Guangying Lv , Ali Moussaoui , Pierre Auger","doi":"10.1016/j.mbs.2024.109220","DOIUrl":"10.1016/j.mbs.2024.109220","url":null,"abstract":"<div><p>Ecological balance and stable economic development are crucial for the fishery. This study proposes a predator–prey system for marine communities, where the growth of predators follows the Allee effect and takes into account the rapid fluctuations in resource prices caused by supply and demand. The system predicts the existence of catastrophic equilibrium, which may lead to the extinction of prey, consequently leading to the extinction of predators, but fishing efforts remain high. Marine protected areas are established near fishing areas to avoid such situations. Fish migrate rapidly between these two areas and are only harvested in the nonprotected areas. A three-dimensional simplified model is derived by applying variable aggregation to describe the variation of global variables on a slow time scale. To seek conditions to avoid species extinction and maintain sustainable fishing activities, the existence of positive equilibrium points and their local stability are explored based on the simplified model. Moreover, the long-term impact of establishing marine protected areas and levying taxes based on unit catch on fishery dynamics is studied, and the optimal tax policy is obtained by applying Pontryagin’s maximum principle. The theoretical analysis and numerical examples of this study demonstrate the comprehensive effectiveness of increasing the proportion of marine protected areas and controlling taxes on the sustainable development of fishery.</p></div>","PeriodicalId":51119,"journal":{"name":"Mathematical Biosciences","volume":null,"pages":null},"PeriodicalIF":4.3,"publicationDate":"2024-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141142880","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Kang-Ling Liao, Adam J. Wieler, Pedro M. Lopez Gascon
{"title":"Mathematical modeling and analysis of cancer treatment with radiation and anti-PD-L1","authors":"Kang-Ling Liao, Adam J. Wieler, Pedro M. Lopez Gascon","doi":"10.1016/j.mbs.2024.109218","DOIUrl":"10.1016/j.mbs.2024.109218","url":null,"abstract":"<div><p>In cancer treatment, radiation therapy (RT) induces direct tumor cell death due to DNA damage, but it also enhances the deaths of radiosensitive immune cells and is followed by local relapse and up-regulation of immune checkpoint ligand PD-L1. Since the binding between PD-1 and PD-L1 curtails anti-tumor immunities, combining RT and PD-L1 inhibitor, anti-PD-L1, is a potential method to improve the treatment efficacy by RT. Some experiments support this hypothesis by showing that the combination of ionizing irradiation (IR) and anti-PD-L1 improves tumor reduction comparing to the monotherapy of IR or anti-PD-L1. In this work, we create a simplified ODE model to study the order of tumor growths under treatments of IR and anti-PD-L1. Our synergy analysis indicates that both IR and anti-PD-L1 improve the tumor reduction of each other, when IR and anti-PD-L1 are given simultaneously. When giving IR and anti-PD-L1 separately, a high dosage of IR should be given first to efficiently reduce tumor load and then followed by anti-PD-L1 with strong efficacy to maintain the tumor reduction and slow down the relapse. Increasing the duration of anti-PD-L1 improves the tumor reduction, but it cannot prolong the duration that tumor relapses to the level of the control case. Under some simplification, we also prove that the model has an unstable tumor free equilibrium and a locally asymptotically stable tumor persistent equilibrium. Our bifurcation diagram reveals a transition from tumor elimination to tumor persistence, as the tumor growth rate increases. In the tumor persistent case, both anti-PD-L1 and IR can reduce tumor amount in the long term.</p></div>","PeriodicalId":51119,"journal":{"name":"Mathematical Biosciences","volume":null,"pages":null},"PeriodicalIF":4.3,"publicationDate":"2024-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141133264","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A theoretical model of anaphase","authors":"Brian D. Sleeman , Iain W. Stewart","doi":"10.1016/j.mbs.2024.109219","DOIUrl":"10.1016/j.mbs.2024.109219","url":null,"abstract":"<div><p>This paper develops a theory for anaphase in cells. After a brief description of microtubules, the mitotic spindle and the centrosome, a mathematical model for anaphase is introduced and developed in the context of the cell cytoplasm and liquid crystalline structures. Prophase, prometaphase and metaphase are then briefly described in order to focus on anaphase, which is the main study of this paper. The entities involved are modelled in terms of liquid crystal defects and microtubules are represented as defect flux lines. The mathematical techniques employed make extensive use of energy considerations based on the work that was developed by Dafermos (1970) from the classical Frank–Oseen nematic liquid crystal energy (Frank, 1958; Oseen, 1933). With regard to liquid crystal theory we introduce the concept of <em>regions of influence</em> for defects which it is believed have important implications beyond the subject of this paper. The results of this paper align with observed biochemical phenomena and are explored in application to HeLa cells and Caenorhabditis elegans. This unified approach offers the possibility of gaining insight into various consequences of mitotic abnormalities which may result in Down syndrome, Hodgkin lymphoma, breast, prostate and various other types of cancer.</p></div>","PeriodicalId":51119,"journal":{"name":"Mathematical Biosciences","volume":null,"pages":null},"PeriodicalIF":4.3,"publicationDate":"2024-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0025556424000798/pdfft?md5=e431286472ea8976254b6a5cf772312d&pid=1-s2.0-S0025556424000798-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141141314","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Leul Mekonnen Anteneh, Bruno Enagnon Lokonon, Romain Glèlè Kakaï
{"title":"Modelling techniques in cholera epidemiology: A systematic and critical review","authors":"Leul Mekonnen Anteneh, Bruno Enagnon Lokonon, Romain Glèlè Kakaï","doi":"10.1016/j.mbs.2024.109210","DOIUrl":"10.1016/j.mbs.2024.109210","url":null,"abstract":"<div><p>Diverse modelling techniques in cholera epidemiology have been developed and used to (1) study its transmission dynamics, (2) predict and manage cholera outbreaks, and (3) assess the impact of various control and mitigation measures. In this study, we carry out a critical and systematic review of various approaches used for modelling the dynamics of cholera. Also, we discuss the strengths and weaknesses of each modelling approach. A systematic search of articles was conducted in Google Scholar, PubMed, Science Direct, and Taylor & Francis. Eligible studies were those concerned with the dynamics of cholera excluding studies focused on models for cholera transmission in animals, socio-economic factors, and genetic & molecular related studies. A total of 476 peer-reviewed articles met the inclusion criteria, with about 40% (32%) of the studies carried out in Asia (Africa). About 52%, 21%, and 9%, of the studies, were based on compartmental (<em>e.g.</em>, SIRB), statistical (time series and regression), and spatial (spatiotemporal clustering) models, respectively, while the rest of the analysed studies used other modelling approaches such as network, machine learning and artificial intelligence, Bayesian, and agent-based approaches. Cholera modelling studies that incorporate vector/housefly transmission of the pathogen are scarce and a small portion of researchers (3.99%) considers the estimation of key epidemiological parameters. Vaccination only platform was utilized as a control measure in more than half (58%) of the studies. Research productivity in cholera epidemiological modelling studies have increased in recent years, but authors used diverse range of models. Future models should consider incorporating vector/housefly transmission of the pathogen and on the estimation of key epidemiological parameters for the transmission of cholera dynamics.</p></div>","PeriodicalId":51119,"journal":{"name":"Mathematical Biosciences","volume":null,"pages":null},"PeriodicalIF":4.3,"publicationDate":"2024-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141082922","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Mathematical modeling of brain metastases growth and response to therapies: A review","authors":"Beatriz Ocaña-Tienda, Víctor M. Pérez-García","doi":"10.1016/j.mbs.2024.109207","DOIUrl":"10.1016/j.mbs.2024.109207","url":null,"abstract":"<div><p>Brain metastases (BMs) are the most common intracranial tumor type and a significant health concern, affecting approximately 10% to 30% of all oncological patients. Although significant progress is being made, many aspects of the metastatic process to the brain and the growth of the resulting lesions are still not well understood. There is a need for an improved understanding of the growth dynamics and the response to treatment of these tumors. Mathematical models have been proven valuable for drawing inferences and making predictions in different fields of cancer research, but few mathematical works have considered BMs. This comprehensive review aims to establish a unified platform and contribute to fostering emerging efforts dedicated to enhancing our mathematical understanding of this intricate and challenging disease. We focus on the progress made in the initial stages of mathematical modeling research regarding BMs and the significant insights gained from such studies. We also explore the vital role of mathematical modeling in predicting treatment outcomes and enhancing the quality of clinical decision-making for patients facing BMs.</p></div>","PeriodicalId":51119,"journal":{"name":"Mathematical Biosciences","volume":null,"pages":null},"PeriodicalIF":4.3,"publicationDate":"2024-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0025556424000671/pdfft?md5=466ff2a47e3d080a8452683ebe5789d7&pid=1-s2.0-S0025556424000671-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140961252","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}