Epidemic spreading on biological evolution networks

IF 1.9 4区 数学 Q2 BIOLOGY
Zhong-Pan Cao, Jin-Xuan Yang, Ying Tan
{"title":"Epidemic spreading on biological evolution networks","authors":"Zhong-Pan Cao,&nbsp;Jin-Xuan Yang,&nbsp;Ying Tan","doi":"10.1016/j.mbs.2025.109416","DOIUrl":null,"url":null,"abstract":"<div><div>The spread of epidemics is closely related to network structure. In reality, network structure will change over time with the departure or employment of many individuals. Mathematical models can not only be used to simulate the evolution of networks, but also to better analyze the changes in the spread of epidemics. In the present work, we propose two mathematical models of evolution networks with the addition and deletion of nodes to analyze epidemic spread on homogeneous and heterogeneous networks. We discuss various factors affecting the spread of epidemics when the evolution network reaches a steady state, including the number of new nodes and their initial degree, the deletion rate of nodes, and so on. The results show that in homogeneous networks, the epidemic threshold first increases and then decreases, while in heterogeneous networks, the epidemic threshold increases or decreases under certain conditions. It provides many measures to improve the epidemic threshold and slow down the spread of epidemics.</div></div>","PeriodicalId":51119,"journal":{"name":"Mathematical Biosciences","volume":"383 ","pages":"Article 109416"},"PeriodicalIF":1.9000,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Biosciences","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0025556425000422","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The spread of epidemics is closely related to network structure. In reality, network structure will change over time with the departure or employment of many individuals. Mathematical models can not only be used to simulate the evolution of networks, but also to better analyze the changes in the spread of epidemics. In the present work, we propose two mathematical models of evolution networks with the addition and deletion of nodes to analyze epidemic spread on homogeneous and heterogeneous networks. We discuss various factors affecting the spread of epidemics when the evolution network reaches a steady state, including the number of new nodes and their initial degree, the deletion rate of nodes, and so on. The results show that in homogeneous networks, the epidemic threshold first increases and then decreases, while in heterogeneous networks, the epidemic threshold increases or decreases under certain conditions. It provides many measures to improve the epidemic threshold and slow down the spread of epidemics.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Mathematical Biosciences
Mathematical Biosciences 生物-生物学
CiteScore
7.50
自引率
2.30%
发文量
67
审稿时长
18 days
期刊介绍: Mathematical Biosciences publishes work providing new concepts or new understanding of biological systems using mathematical models, or methodological articles likely to find application to multiple biological systems. Papers are expected to present a major research finding of broad significance for the biological sciences, or mathematical biology. Mathematical Biosciences welcomes original research articles, letters, reviews and perspectives.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信