Journal of Cognitive Neuroscience最新文献

筛选
英文 中文
Neural Correlates of Retrieval Success and Precision: A Functional Magnetic Resonance Imaging Study. 检索成功率和精确度的神经相关性:功能磁共振成像研究
IF 3.1 3区 医学
Journal of Cognitive Neuroscience Pub Date : 2024-11-09 DOI: 10.1162/jocn_a_02277
Mingzhu Hou, Paul F Hill, Ayse N Z Aktas, Arne D Ekstrom, Michael D Rugg
{"title":"Neural Correlates of Retrieval Success and Precision: A Functional Magnetic Resonance Imaging Study.","authors":"Mingzhu Hou, Paul F Hill, Ayse N Z Aktas, Arne D Ekstrom, Michael D Rugg","doi":"10.1162/jocn_a_02277","DOIUrl":"10.1162/jocn_a_02277","url":null,"abstract":"<p><p>Prior studies examining the neural mechanisms underlying retrieval success and precision have yielded inconsistent results. Here, the neural correlates of success and precision were examined with a memory task that assessed precision for spatial location. A sample of healthy young adults underwent functional magnetic resonance imaging scanning during a single study-test cycle. At study, participants viewed a series of object images, each placed at a randomly selected location on an imaginary circle. At test, studied images were intermixed with new images and presented to the participants. The requirement was to move a cursor to the location of the studied image, guessing if necessary. Participants then signaled whether the presented image had been studied. Memory precision was quantified as the angular difference between the studied location and the location selected by the participant. A precision effect was evident in the left angular gyrus, where BOLD activity covaried with location accuracy. In addition, multivoxel pattern analysis revealed a significant item-level reinstatement effect in the angular gyrus for high-precision trials. There was no evidence of a retrieval success effect in this region. BOLD activity in the hippocampus was insensitive to both success and precision. These findings are partially consistent with prior evidence that success and precision are dissociable features of memory retrieval.</p>","PeriodicalId":51081,"journal":{"name":"Journal of Cognitive Neuroscience","volume":" ","pages":"1-13"},"PeriodicalIF":3.1,"publicationDate":"2024-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142631923","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
How Can Graph Theory Inform the Dual-stream Model of Speech Processing? A Resting-state Functional Magnetic Resonance Imaging Study of Stroke and Aphasia Symptomology. 图论如何指导语音处理的双流模型?脑卒中和失语症症状的静息态功能磁共振成像研究。
IF 3.1 3区 医学
Journal of Cognitive Neuroscience Pub Date : 2024-11-09 DOI: 10.1162/jocn_a_02278
Haoze Zhu, Megan C Fitzhugh, Lynsey M Keator, Lisa Johnson, Chris Rorden, Leonardo Bonilha, Julius Fridriksson, Corianne Rogalsky
{"title":"How Can Graph Theory Inform the Dual-stream Model of Speech Processing? A Resting-state Functional Magnetic Resonance Imaging Study of Stroke and Aphasia Symptomology.","authors":"Haoze Zhu, Megan C Fitzhugh, Lynsey M Keator, Lisa Johnson, Chris Rorden, Leonardo Bonilha, Julius Fridriksson, Corianne Rogalsky","doi":"10.1162/jocn_a_02278","DOIUrl":"10.1162/jocn_a_02278","url":null,"abstract":"<p><p>The dual-stream model of speech processing describes a cortical network involved in speech processing. However, it is not yet known if the dual-stream model represents actual intrinsic functional brain networks. Furthermore, it is unclear how disruptions after a stroke to the functional connectivity of the dual-stream model's regions are related to speech production and comprehension impairments seen in aphasia. To address these questions, in the present study, we examined two independent resting-state fMRI data sets: (1) 28 neurotypical matched controls and (2) 28 chronic left-hemisphere stroke survivors collected at another site. We successfully identified an intrinsic functional network among the dual-stream model's regions in the control group using functional connectivity. We then used both standard functional connectivity analyses and graph theory approaches to determine how this connectivity may predict performance on clinical aphasia assessments. Our findings provide evidence that the dual-stream model of speech processing is an intrinsic network as measured via resting-state MRI and that functional connectivity of the hub nodes of the dual-stream network defined by graph theory methods, but not overall average network connectivity, is weaker in the stroke group than in the control participants. In addition, the functional connectivity of the hub nodes predicted linguistic impairments on clinical assessments. In particular, the relative strength of connectivity of the right hemisphere's homologues of the left dorsal stream hubs to the left dorsal hubs, versus to the right ventral stream hubs, is a particularly strong predictor of poststroke aphasia severity and symptomology.</p>","PeriodicalId":51081,"journal":{"name":"Journal of Cognitive Neuroscience","volume":" ","pages":"1-30"},"PeriodicalIF":3.1,"publicationDate":"2024-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142631920","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Transcranial Direct-current Stimulation of the Dorsolateral Prefrontal Cortex Modulates Voluntary Task-order Coordination in Dual-task Situations. 经颅直流电刺激背外侧前额叶皮层可调节双任务情况下的自主任务顺序协调性
IF 3.1 3区 医学
Journal of Cognitive Neuroscience Pub Date : 2024-11-01 DOI: 10.1162/jocn_a_02270
Sebastian Kübler, Leif Langsdorf, Marlene Meyer, Torsten Schubert
{"title":"Transcranial Direct-current Stimulation of the Dorsolateral Prefrontal Cortex Modulates Voluntary Task-order Coordination in Dual-task Situations.","authors":"Sebastian Kübler, Leif Langsdorf, Marlene Meyer, Torsten Schubert","doi":"10.1162/jocn_a_02270","DOIUrl":"https://doi.org/10.1162/jocn_a_02270","url":null,"abstract":"<p><p>Dual tasks (DTs) require additional control processes that temporally coordinate the processing of the two component tasks. Previous studies employing imaging as well as noninvasive stimulation techniques have demonstrated that the dorsolateral prefrontal cortex (dlPFC) is causally involved in these task-order coordination processes. However, in these studies, participants were instructed to match their processing order to an externally provided and mandatory order criterion during DT processing. Hence, it is still unknown whether the dlPFC is also recruited for rather voluntary order control processes, which are required in situations that allow for intentional and internally generated order choices. To address this issue, in two experiments, we applied anodal (Experiment 1) and cathodal (Experiment 2) transcranial direct-current stimulation during a random-order DT in which participants could freely decide about their order of task processing. In our results, we found facilitatory and inhibitory effects on voluntary task-order coordination because of anodal and cathodal transcranial direct-current stimulation, respectively. This was indicated by shorter RTs when participants intentionally switched the task order relative to the preceding trial during anodal as well as a reduced tendency to switch the task order relative to the preceding trial during cathodal stimulation compared with the sham stimulation. Overall, these findings indicate that the dlPFC is also causally involved in voluntary task-order coordination processes. In particular, we argue that the dlPFC is recruited for intentionally updating and implementing task-order information that is necessary for scheduling the processing of two temporally overlapping tasks.</p>","PeriodicalId":51081,"journal":{"name":"Journal of Cognitive Neuroscience","volume":" ","pages":"1-19"},"PeriodicalIF":3.1,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142585006","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Attentional Refreshing in Working Memory and Its Interplay with Long-term Memory: A Behavioral and EEG Study. 工作记忆中的注意刷新及其与长时记忆的相互作用:行为和脑电图研究
IF 3.1 3区 医学
Journal of Cognitive Neuroscience Pub Date : 2024-11-01 DOI: 10.1162/jocn_a_02267
Maximilien Labaronne, Anne Caclin, Gaën Plancher
{"title":"Attentional Refreshing in Working Memory and Its Interplay with Long-term Memory: A Behavioral and EEG Study.","authors":"Maximilien Labaronne, Anne Caclin, Gaën Plancher","doi":"10.1162/jocn_a_02267","DOIUrl":"https://doi.org/10.1162/jocn_a_02267","url":null,"abstract":"<p><p>Despite the growing interest in the study of attentional refreshing, the functioning of this working memory maintenance mechanism, including its cerebral underpinnings, is still debated. In particular, it remains unclear whether refreshing promotes long-term memory and whether it, in return, depends on long-term memory content to operate. Here, we used direct maintenance instructions and measured brain activity to investigate working memory maintenance with two objectives: (1) test if different behavioral and oscillatory patterns could be observed when participants were instructed to use attentional refreshing versus verbal rehearsal, and (2) observe whether and how refreshing is modulated when maintaining novel (pseudowords) versus familiar (words) memoranda. We conducted an EEG experiment using a modified Brown-Peterson task, in which we manipulated the type of maintenance engaged through explicit instructions (verbal rehearsal vs. refreshing), the type of memoranda (words vs. pseudowords), and the memory load (2 vs. 6). Using scalp EEG, we measured both neural oscillations during working memory maintenance and ERPs during the concurrent parity judgment task. For words, we showed that verbal rehearsal benefited more short-term recall whereas refreshing benefited more delayed recall. In keeping with these behavioral differences between maintenance instructions, frontal-midline theta power increased with memory load only when using verbal rehearsal, whereas occipito-parietal alpha desynchronization was larger with refreshing than verbal rehearsal. When maintaining pseudowords, verbal rehearsal also benefitted short-term recall more than refreshing. However, no long-term memory benefit of refreshing was observed for pseudowords, and oscillatory activity was not different under the two maintenance instructions. Our results provide new evidence supporting the independence between attentional refreshing and verbal rehearsal, and bring new insight into refreshing functioning. We discuss the possible interpretations of these results and the implications for the attentional refreshing literature.</p>","PeriodicalId":51081,"journal":{"name":"Journal of Cognitive Neuroscience","volume":" ","pages":"1-23"},"PeriodicalIF":3.1,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142562998","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Theta Transcranial Alternating Current Stimulation Is Not Effective in Improving Working Memory Performance. θ经颅交流电刺激对提高工作记忆能力无效
IF 3.1 3区 医学
Journal of Cognitive Neuroscience Pub Date : 2024-11-01 DOI: 10.1162/jocn_a_02269
Dauren Kasanov, Olga Dorogina, Faisal Mushtaq, Yuri G Pavlov
{"title":"Theta Transcranial Alternating Current Stimulation Is Not Effective in Improving Working Memory Performance.","authors":"Dauren Kasanov, Olga Dorogina, Faisal Mushtaq, Yuri G Pavlov","doi":"10.1162/jocn_a_02269","DOIUrl":"https://doi.org/10.1162/jocn_a_02269","url":null,"abstract":"<p><p>There is an extensive body of research showing a significant relationship between frontal midline theta activity in the 4- to 8-Hz range and working memory (WM) performance. Transcranial alternating current stimulation (tACS) is recognized for inducing lasting changes in brain oscillatory activity. Across two experiments, we tested whether WM could be improved through tACS of dorsomedial pFC and ACC, by affecting executive control networks associated with frontal midline theta. In Experiment 1, after either a 20-min verum or sham stimulation applied to Fpz-CPz at 1 mA and 6 Hz, 31 participants performed WM tasks, while EEG was recorded. The tasks required participants to either mentally manipulate memory items or retain them in memory as they were originally presented. No significant effects were observed in behavioral performance, and we found no change in theta activity during rest and task after stimulation. However, alpha activity during retention or manipulation of information in WM was less strongly enhanced during the delay period after verum stimulation as compared with sham. In Experiment 2 (n = 25), tACS was administered during the task in two separate sessions. Here, we changed the order of the stimulation blocks: A 25-min task block was either accompanied first by sham stimulation and then by verum stimulation, or vice versa. Again, we found no improvements in WM through either tACS after-effects or online stimulation. Taken together, our results demonstrate that theta frequency tACS applied at the midline is not an effective method for enhancing WM.</p>","PeriodicalId":51081,"journal":{"name":"Journal of Cognitive Neuroscience","volume":" ","pages":"1-16"},"PeriodicalIF":3.1,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142563001","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Movement Strategy Moderates the Effect of Spatially Congruent Cues on the Stability of Rhythmic Bimanual Finger Movements. 运动策略可调节空间一致性线索对有节奏双指运动稳定性的影响
IF 3.1 3区 医学
Journal of Cognitive Neuroscience Pub Date : 2024-11-01 DOI: 10.1162/jocn_a_02268
Ronan Denyer, Lara A Boyd
{"title":"Movement Strategy Moderates the Effect of Spatially Congruent Cues on the Stability of Rhythmic Bimanual Finger Movements.","authors":"Ronan Denyer, Lara A Boyd","doi":"10.1162/jocn_a_02268","DOIUrl":"https://doi.org/10.1162/jocn_a_02268","url":null,"abstract":"<p><p>Spatially congruent cues increase the speed of bimanual reach decisions compared with abstract symbolic cues, particularly for asymmetric reaches. Asymmetric rhythmic bimanual movements are less stable than symmetric rhythmic movements, but it is not well understood if spatially congruent cues similarly increase the stability of asymmetric rhythmic bimanual movements. To address this question, in Experiment 1, participants performed symmetric and asymmetric bimanual rhythmic finger tapping movements at different movement frequencies in time with flickering spatially congruent and abstract symbolic stimuli. As expected, symmetric movements were more stable. Spatially congruent cues similarly increased the stability of symmetric and asymmetric movements compared with abstract symbolic cues. The benefits of spatial congruence and movement symmetry were restricted to high movement frequencies (>2 Hz). To better understand if the emergence of these effects at high movement frequencies was driven by a change in movement strategy, in Experiment 2, video of the hands was concurrently recorded during task performance. Markerless motion tracking software revealed that participants switched from discontinuous to continuous movement strategies with increasing movement frequency. Because discontinuous and continuous movements are thought to be controlled by distinct neurocognitive systems, this might explain why the beneficial effects of spatial congruence and response symmetry emerged only at high movement frequencies. Overall, results from the current study indicate that the perceptual quality of the stimulus use to cue movement frequency can have powerful effects on the stability of rhythmic bimanual movements, but that these effects may depend on whether discontinuous or continuous movement strategies are selected.</p>","PeriodicalId":51081,"journal":{"name":"Journal of Cognitive Neuroscience","volume":" ","pages":"1-20"},"PeriodicalIF":3.1,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142584924","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Rapid Learning of Temporal Dependencies at Multiple Timescales 在多个时间尺度上快速学习时间相关性。
IF 3.1 3区 医学
Journal of Cognitive Neuroscience Pub Date : 2024-10-29 DOI: 10.1162/jocn_a_02232
Cybelle M. Smith;Sharon L. Thompson-Schill;Anna C. Schapiro
{"title":"Rapid Learning of Temporal Dependencies at Multiple Timescales","authors":"Cybelle M. Smith;Sharon L. Thompson-Schill;Anna C. Schapiro","doi":"10.1162/jocn_a_02232","DOIUrl":"10.1162/jocn_a_02232","url":null,"abstract":"Our environment contains temporal information unfolding simultaneously at multiple timescales. How do we learn and represent these dynamic and overlapping information streams? We investigated these processes in a statistical learning paradigm with simultaneous short and long timescale contingencies. Human participants (n = 96) played a game where they learned to quickly click on a target image when it appeared in one of nine locations, in eight different contexts. Across contexts, we manipulated the order of target locations: at a short timescale, the order of pairs of sequential locations in which the target appeared; at a longer timescale, the set of locations that appeared in the first versus the second half of the game. Participants periodically predicted the upcoming target location, and later performed similarity judgments comparing the games based on their order properties. Participants showed context-dependent sensitivity to order information at both short and long timescales, with evidence of stronger learning for short timescales. We modeled the learning paradigm using a gated recurrent network trained to make immediate predictions, which demonstrated multilevel learning timecourses and patterns of sensitivity to the similarity structure of the games that mirrored human participants. The model grouped games with matching rule structure and dissociated games based on low-level order information more so than high-level order information. The work shows how humans and models can rapidly and concurrently acquire order information at different timescales.","PeriodicalId":51081,"journal":{"name":"Journal of Cognitive Neuroscience","volume":"36 11","pages":"2343-2356"},"PeriodicalIF":3.1,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141898869","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Human Visual Pathways for Action Recognition versus Deep Convolutional Neural Networks: Representation Correspondence in Late but Not Early Layers 用于动作识别的人类视觉通路与深度卷积神经网络:后期层而非早期层的表征对应性。
IF 3.1 3区 医学
Journal of Cognitive Neuroscience Pub Date : 2024-10-29 DOI: 10.1162/jocn_a_02233
Yujia Peng;Xizi Gong;Hongjing Lu;Fang Fang
{"title":"Human Visual Pathways for Action Recognition versus Deep Convolutional Neural Networks: Representation Correspondence in Late but Not Early Layers","authors":"Yujia Peng;Xizi Gong;Hongjing Lu;Fang Fang","doi":"10.1162/jocn_a_02233","DOIUrl":"10.1162/jocn_a_02233","url":null,"abstract":"Deep convolutional neural networks (DCNNs) have attained human-level performance for object categorization and exhibited representation alignment between network layers and brain regions. Does such representation alignment naturally extend to other visual tasks beyond recognizing objects in static images? In this study, we expanded the exploration to the recognition of human actions from videos and assessed the representation capabilities and alignment of two-stream DCNNs in comparison with brain regions situated along ventral and dorsal pathways. Using decoding analysis and representational similarity analysis, we show that DCNN models do not show hierarchical representation alignment to human brain across visual regions when processing action videos. Instead, later layers of DCNN models demonstrate greater representation similarities to the human visual cortex. These findings were revealed for two display formats: photorealistic avatars with full-body information and simplified stimuli in the point-light display. The discrepancies in representation alignment suggest fundamental differences in how DCNNs and the human brain represent dynamic visual information related to actions.","PeriodicalId":51081,"journal":{"name":"Journal of Cognitive Neuroscience","volume":"36 11","pages":"2458-2480"},"PeriodicalIF":3.1,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10738325","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141898868","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Goal Shifts Structure Memories and Prioritize Event-defining Information in Memory 目标转移构建了记忆,并在记忆中优先考虑事件定义信息。
IF 3.1 3区 医学
Journal of Cognitive Neuroscience Pub Date : 2024-10-29 DOI: 10.1162/jocn_a_02220
Emily T. Cowan;Avi J. Chanales;Lila Davachi;David Clewett
{"title":"Goal Shifts Structure Memories and Prioritize Event-defining Information in Memory","authors":"Emily T. Cowan;Avi J. Chanales;Lila Davachi;David Clewett","doi":"10.1162/jocn_a_02220","DOIUrl":"10.1162/jocn_a_02220","url":null,"abstract":"Every day, we encounter far more information than we could possibly remember. Thus, our memory systems must organize and prioritize the details from an experience that can adaptively guide the storage and retrieval of specific episodic events. Prior work has shown that shifts in internal goal states can function as event boundaries, chunking experiences into distinct and memorable episodes. In addition, at short delays, memory for contextual information at boundaries has been shown to be enhanced compared with items within each event. However, it remains unclear if these memory enhancements are limited to features that signal a meaningful transition between events. To determine how changes in dynamic goal states influence the organization and content of long-term memory, we designed a 2-day experiment in which participants viewed a series of black-and-white objects surrounded by a color border on a two-by-two grid. The location of the object on the grid determined which of two tasks participants performed on a given trial. To examine if distinct types of goal shifts modulate the effects of event segmentation, we changed the border color, the task, or both after every four items in a sequence. We found that goal shifts influenced temporal memory in a manner consistent with the formation of distinct events. However, for subjective memory representations in particular, these effects differed by the type of event boundary. Furthermore, to examine if goal shifts lead to the prioritization of goal-relevant features in longer lasting memories, we tested source memory for each object's color and grid location both immediately and after a 24-hr delay. On the immediate test, boundaries enhanced the memory for all concurrent source features compared with nonboundary items, but only if those boundaries involved a goal shift. In contrast, after a delay, the source memory was selectively enhanced for the feature relevant to the goal shift. These findings suggest that goals can adaptively structure memories by prioritizing contextual features that define a unique episode in memory.","PeriodicalId":51081,"journal":{"name":"Journal of Cognitive Neuroscience","volume":"36 11","pages":"2415-2431"},"PeriodicalIF":3.1,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141591990","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Relationship between Event Boundary Strength and Pattern Shifts across the Cortical Hierarchy during Naturalistic Movie-viewing 自然电影观看过程中事件边界强度与大脑皮层模式转变之间的关系
IF 3.1 3区 医学
Journal of Cognitive Neuroscience Pub Date : 2024-10-29 DOI: 10.1162/jocn_a_02213
Yoonjung Lee;Janice Chen
{"title":"The Relationship between Event Boundary Strength and Pattern Shifts across the Cortical Hierarchy during Naturalistic Movie-viewing","authors":"Yoonjung Lee;Janice Chen","doi":"10.1162/jocn_a_02213","DOIUrl":"10.1162/jocn_a_02213","url":null,"abstract":"Our continuous experience is spontaneously segmented by the brain into discrete events. However, the beginning of a new event (an event boundary) is not always sharply identifiable: Phenomenologically, event boundaries vary in salience. How are the response profiles of cortical areas at event boundaries modulated by boundary strength during complex, naturalistic movie-viewing? Do cortical responses scale in a graded manner with boundary strength, or do they merely detect boundaries in a binary fashion? We measured “cortical boundary shifts” as transient changes in multivoxel patterns at event boundaries with different strengths (weak, moderate, and strong), determined by across-participant agreement. Cortical regions with different processing timescales were examined. In auditory areas, which have short timescales, cortical boundary shifts exhibited a clearly graded profile in both group-level and individual-level analyses. In cortical areas with long timescales, including the default mode network, boundary strength modulated pattern shift magnitude at the individual participant level. We also observed a positive relationship between boundary strength and the extent of temporal alignment of boundary shifts across different levels of the cortical hierarchy. In addition, hippocampal activity was highest at event boundaries for which cortical boundary shifts were most aligned across hierarchical levels. Overall, we found that event boundary strength modulated cortical pattern shifts strongly in sensory areas and more weakly in higher-level areas and that stronger boundaries were associated with greater alignment of these shifts across the cortical hierarchy.","PeriodicalId":51081,"journal":{"name":"Journal of Cognitive Neuroscience","volume":"36 11","pages":"2317-2342"},"PeriodicalIF":3.1,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141591994","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信