{"title":"Neural Evidence for Feature-based Distractor Inhibition.","authors":"Aylin A Hanne, Sizhu Han, Anna Schubö","doi":"10.1162/jocn_a_02289","DOIUrl":"https://doi.org/10.1162/jocn_a_02289","url":null,"abstract":"<p><p>Interference from a salient distractor is typically reduced when the appearance of the distractor follows either spatial or feature-based regularities. Although there is a growing body of literature on distractor location learning, the understanding of distractor feature learning remains limited. In the current study, we investigated distractor feature learning by using EEG measures. We assumed that learning benefits distractor handling, and we investigated the role of intertrial priming in distractor feature learning. Furthermore, we examined whether distractor feature learning influences later visual working memory (VWM) performance. Participants performed an adapted variant of the additional singleton task with a distractor that appeared more often in a specific color. The behavioral results provided additional evidence that observers can use distractor feature regularities to reduce distractor interference. At the neural level, we found a reduced PD with high-probability compared with low-probability distractors, suggesting that less suppression is required when the distractor appears in the more likely color. This reduced need for suppression was partly driven by intertrial priming. The PD elicited by repeated high-probability trials decreased over time, indicating that experience with the distractor reduced the need for suppression. In addition, the results showed that distractor feature learning did not affect VWM performance. Overall, our findings demonstrate that distractor feature learning decreases the interference of a salient distractor while also benefitting from intertrial priming processes, thereby improving attentional selection. In addition, it seems that learned distractor feature inhibition is not maintained in VWM when the task context is changed.</p>","PeriodicalId":51081,"journal":{"name":"Journal of Cognitive Neuroscience","volume":" ","pages":"1-19"},"PeriodicalIF":3.1,"publicationDate":"2024-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142958432","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Understanding Visual Perception.","authors":"Dale Purves","doi":"10.1162/jocn_a_02292","DOIUrl":"https://doi.org/10.1162/jocn_a_02292","url":null,"abstract":"<p><p>Visual perception can be thought of in two fundamentally different ways: (1) that what we see is determined by circuitry for detecting and representing object features and conditions in the physical world or (2) that what we see is determined empirically by neural associations based on the relative success of accumulated trial-and-error behavior. The evidence reviewed here indicates that the qualities we perceive are determined empirically. The reasons for this way of seeing are discussed.</p>","PeriodicalId":51081,"journal":{"name":"Journal of Cognitive Neuroscience","volume":" ","pages":"1-11"},"PeriodicalIF":3.1,"publicationDate":"2024-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142958456","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yohan J. John;Jingyi Wang;Daniel Bullock;Helen Barbas
{"title":"Amygdalar Excitation of Hippocampal Interneurons Can Lead to Emotion-driven Overgeneralization of Context","authors":"Yohan J. John;Jingyi Wang;Daniel Bullock;Helen Barbas","doi":"10.1162/jocn_a_02109","DOIUrl":"10.1162/jocn_a_02109","url":null,"abstract":"Context is central to cognition: Detailed contextual representations enable flexible adjustment of behavior via comparison of the current situation with prior experience. Emotional experiences can greatly enhance contextual memory. However, sufficiently intense emotional signals can have the opposite effect, leading to weaker or less specific memories. How can emotional signals have such intensity-dependent effects? A plausible mechanistic account has emerged from recent anatomical data on the impact of the amygdala on the hippocampus in primates. In hippocampal CA3, the amygdala formed potent synapses on pyramidal neurons, calretinin (CR) interneurons, as well as parvalbumin (PV) interneurons. CR interneurons are known to disinhibit pyramidal neuron dendrites, whereas PV neurons provide strong perisomatic inhibition. This potentially counterintuitive connectivity, enabling amygdala to both enhance and inhibit CA3 activity, may provide a mechanism that can boost or suppress memory in an intensity-dependent way. To investigate this possibility, we simulated this connectivity pattern in a spiking network model. Our simulations revealed that moderate amygdala input can enrich CA3 representations of context through disinhibition via CR interneurons, but strong amygdalar input can impoverish CA3 activity through simultaneous excitation and feedforward inhibition via PV interneurons. Our model revealed an elegant circuit mechanism that mediates an affective “inverted U” phenomenon: There is an optimal level of amygdalar input that enriches hippocampal context representations, but on either side of this zone, representations are impoverished. This circuit mechanism helps explain why excessive emotional arousal can disrupt contextual memory and lead to overgeneralization, as seen in severe anxiety and posttraumatic stress disorder.","PeriodicalId":51081,"journal":{"name":"Journal of Cognitive Neuroscience","volume":"36 12","pages":"2667-2686"},"PeriodicalIF":3.1,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139522291","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Prefrontal–Amygdala Pathways for Object and Social Value Representation","authors":"Maia S. Pujara;Elisabeth A. Murray","doi":"10.1162/jocn_a_02144","DOIUrl":"10.1162/jocn_a_02144","url":null,"abstract":"This special focus article was prepared to honor the memory of our National Institutes of Health colleague, friend, and mentor Leslie G. Ungerleider, who passed away in December 2020, and is based on a presentation given at a symposium held in her honor at the National Institutes of Health in September 2022. In this article, we describe an extension of Leslie Ungerleider's influential work on the object analyzer pathway in which the inferior temporal visual cortex interacts with the amygdala, and then discuss a broader role for the amygdala in stimulus–outcome associative learning in humans and nonhuman primates. We summarize extant data from our and others' laboratories regarding two distinct frontal–amygdala circuits that subserve nonsocial and social valuation processes. Both neuropsychological and neurophysiological data suggest a role for the OFC in nonsocial valuation and the ACC in social valuation. More recent evidence supports the possibility that the amygdala functions in conjunction with these frontal regions to subserve these distinct, complex valuation processes. We emphasize the dynamic nature of valuation processes and advocate for additional research on amygdala–frontal interactions in these domains.","PeriodicalId":51081,"journal":{"name":"Journal of Cognitive Neuroscience","volume":"36 12","pages":"2687-2696"},"PeriodicalIF":3.1,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140289572","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Make or Break: The Influence of Expected Challenges and Rewards on the Motivation and Experience Associated with Cognitive Effort Exertion","authors":"Yue Zhang;Xiamin Leng;Amitai Shenhav","doi":"10.1162/jocn_a_02247","DOIUrl":"10.1162/jocn_a_02247","url":null,"abstract":"Challenging goals can induce harder work but also greater stress, in turn potentially undermining goal achievement. We sought to examine how mental effort and subjective experiences thereof interact as a function of the challenge level and the size of the incentives at stake. Participants performed a task that rewarded individual units of effort investment (correctly performed Stroop trials) but only if they met a threshold number of correct trials within a fixed time interval (challenge level). We varied this challenge level (Study 1, n = 40) and the rewards at stake (Study 2, n = 79) and measured variability in task performance and self-reported affect across task intervals. Greater challenge and higher rewards facilitated greater effort investment but also induced greater stress, whereas higher rewards (and lower challenge) simultaneously induced greater positive affect. Within intervals, we observed an initial speed up then slowdown in performance, which could reflect dynamic reconfiguration of control. Collectively, these findings further our understanding of the influence of task demands and incentives on mental effort exertion and well-being.","PeriodicalId":51081,"journal":{"name":"Journal of Cognitive Neuroscience","volume":"36 12","pages":"2863-2885"},"PeriodicalIF":3.1,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142250020","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Reward Accelerates the Preparation of Goal-directed Actions under Conflict","authors":"Tyler J. Adkins;Taraz G. Lee","doi":"10.1162/jocn_a_02072","DOIUrl":"10.1162/jocn_a_02072","url":null,"abstract":"Our goals sometimes conflict with our prepotent habitual responses, which often leads to impaired performance on a variety of tasks. People are better at exerting cognitive control to overcome prepotent and automatic responses when they are motivated by the prospect of reward. The standard experimental paradigms used to study this phenomenon examine free RTs that allow participants to select a variety of response strategies including delaying response initiation to avoid committing errors. However, this approach makes it difficult to determine which control processes are affected by reward. Does reward lead to improved performance via the inhibition of prepotent responses or the facilitation of goal-directed processing? Here, we use a forced-response paradigm to fix response initiation and systematically vary the time available for the cognitive processing necessary for response preparation. Using a probabilistic model that dissociates the preparation of habitual and goal-directed responses, we obtain evidence across multiple experiments (n = 87 people) that reward selectively accelerates the preparation of goal-directed actions in the context of conflict.","PeriodicalId":51081,"journal":{"name":"Journal of Cognitive Neuroscience","volume":"36 12","pages":"2831-2846"},"PeriodicalIF":3.1,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41240677","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Real Face Value: The Processing of Naturalistic Facial Expressions in the Macaque Inferior Temporal Cortex","authors":"Jessica Taubert;Shruti Japee","doi":"10.1162/jocn_a_02108","DOIUrl":"10.1162/jocn_a_02108","url":null,"abstract":"For primates, expressions of fear are thought to be powerful social signals. In laboratory settings, faces with fearful expressions have reliably evoked valence effects in inferior temporal cortex. However, because macaques use so called “fear grins” in a variety of different contexts, the deeper question is whether the macaque inferior temporal cortex is tuned to the prototypical fear grin, or to conspecifics signaling fear? In this study, we combined neuroimaging with the results of a behavioral task to investigate how macaques encode a wide variety of fearful facial expressions. In Experiment 1, we identified two sets of macaque face stimuli using different approaches; we selected faces based on the emotional context (i.e., calm vs. fearful), and we selected faces based on the engagement of action units (i.e., neutral vs. fear grins). We also included human faces in Experiment 1. Then, using fMRI, we found that the faces selected based on context elicited a larger valence effect in the inferior temporal cortex than faces selected based on visual appearance. Furthermore, human facial expressions only elicited weak valence effects. These observations were further supported by the results of a two-alternative, forced-choice task (Experiment 2), suggesting that fear grins vary in their perceived pleasantness. Collectively, these findings indicate that the macaque inferior temporal cortex is more involved in social intelligence than commonly assumed, encoding emergent properties in naturalistic face stimuli that transcend basic visual features. These results demand a rethinking of theories surrounding the function and operationalization of primate inferior temporal cortex.","PeriodicalId":51081,"journal":{"name":"Journal of Cognitive Neuroscience","volume":"36 12","pages":"2725-2741"},"PeriodicalIF":3.1,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139522332","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Insights from the Evolving Model of Two Cortical Visual Pathways","authors":"Chris Baker;Dwight Kravitz","doi":"10.1162/jocn_a_02192","DOIUrl":"10.1162/jocn_a_02192","url":null,"abstract":"The two cortical visual pathways framework has had a profound influence on theories and empirical studies of the visual system for over 40 years. By grounding physiological responses and behavior in neuroanatomy, the framework provided a critical guide for understanding vision. Although the framework has evolved over time, as our understanding of the physiology and neuroanatomy expanded, cortical visual processing is still often conceptualized as two separate pathways emerging from the primary visual cortex that support distinct behaviors (“what” vs. “where/how”). Here, we take a historical perspective and review the continuing evolution of the framework, discussing key and often overlooked insights. Rather than a functional and neuroanatomical bifurcation into two independent serial, hierarchical pathways, the current evidence points to two highly recurrent heterarchies with heterogeneous connections to cortical regions and subcortical structures that flexibly support a wide variety of behaviors. Although many of the simplifying assumptions of the framework are belied by the evidence gathered since its initial proposal, the core insight of grounding function and behavior in neuroanatomy remains fundamental. Given this perspective, we highlight critical open questions and the need for a better understanding of neuroanatomy, particularly in the human.","PeriodicalId":51081,"journal":{"name":"Journal of Cognitive Neuroscience","volume":"36 12","pages":"2568-2579"},"PeriodicalIF":3.1,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141184680","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Behavioral Studies Reveal Functional Differences in Image Processing by Ventral Stream Areas TEO and TE","authors":"Barry J. Richmond;Mark A. G. Eldridge","doi":"10.1162/jocn_a_02168","DOIUrl":"10.1162/jocn_a_02168","url":null,"abstract":"","PeriodicalId":51081,"journal":{"name":"Journal of Cognitive Neuroscience","volume":"36 12","pages":"2580-2583"},"PeriodicalIF":3.1,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140672556","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Effects of Vergence Eye Movement Planning on Size Perception and Early Visual Processing","authors":"Yichong Zhang;Xiaoqian Wu;Chao Zheng;Yuqing Zhao;Jie Gao;Zhiqing Deng;Xilin Zhang;Juan Chen","doi":"10.1162/jocn_a_02207","DOIUrl":"10.1162/jocn_a_02207","url":null,"abstract":"Our perception of objects depends on non-oculomotor depth cues, such as pictorial distance cues and binocular disparity, and oculomotor depth cues, such as vergence and accommodation. Although vergence eye movements are always involved in perceiving real distance, previous studies have mainly focused on the effect of oculomotor state via “proprioception” on distance and size perception. It remains unclear whether the oculomotor command of vergence eye movement would also influence visual processing. To address this question, we placed a light at 28.5 cm and a screen for stimulus presentation at 57 cm from the participants. In the NoDivergence condition, participants were asked to maintain fixation on the light regardless of stimulus presentation throughout the trial. In the WithDivergence condition, participants were instructed to initially maintain fixation on the near light and then turn their two eyes outward to look at the stimulus on the far screen. The stimulus was presented for 100 msec, entirely within the preparation stage of the divergence eye movement. We found that participants perceived the stimulus as larger but were less sensitive to stimulus sizes in the WithDivergence condition than in the NoDivergence condition. The earliest visual evoked component C1 (peak latency 80 msec), which varied with stimulus size in the NoDivergence condition, showed similar amplitudes for larger and smaller stimuli in the WithDivergence condition. These results show that vergence eye movement planning affects the earliest visual processing and size perception, and demonstrate an example of the effect of motor command on sensory processing.","PeriodicalId":51081,"journal":{"name":"Journal of Cognitive Neuroscience","volume":"36 12","pages":"2793-2806"},"PeriodicalIF":3.1,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141472350","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}