{"title":"编码任务中走神的神经关联:64项功能性磁共振成像研究的荟萃分析。","authors":"Hongkeun Kim","doi":"10.1162/jocn_a_02343","DOIUrl":null,"url":null,"abstract":"<p><p>Our minds frequently drift from the task at hand to other mental content, a process commonly referred to as mind-wandering. Task focus typically leads to high-quality encoding of task events, whereas mind-wandering tends to result in low-quality encoding. This study conducted a meta-analysis of fMRI studies comparing high-quality and low-quality encoding to explore the neural correlates of mind-wandering. Key findings show that activation during mind-wandering is closely associated with four specific subnetworks: Default Mode Network-A, Frontoparietal Network-B and -C, and Ventral Attention Network-B. In contrast, deactivation primarily occurs within Dorsal Attention Network-A, Frontoparietal Network-A, and Default Mode Network-B and -C. These findings offer empirical support for several prominent theoretical accounts of mind-wandering, including those emphasizing internal cognition, perceptual decoupling, executive control (both failure and engagement), and reduced filtering. These results highlight the importance of a fine-grained, network-based approach to understanding the complex neural dynamics of mind-wandering.</p>","PeriodicalId":51081,"journal":{"name":"Journal of Cognitive Neuroscience","volume":" ","pages":"1-24"},"PeriodicalIF":3.1000,"publicationDate":"2025-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Neural Correlates of Mind-wandering during Encoding Tasks: A Meta-analysis of 64 Functional Magnetic Resonance Imaging Studies.\",\"authors\":\"Hongkeun Kim\",\"doi\":\"10.1162/jocn_a_02343\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Our minds frequently drift from the task at hand to other mental content, a process commonly referred to as mind-wandering. Task focus typically leads to high-quality encoding of task events, whereas mind-wandering tends to result in low-quality encoding. This study conducted a meta-analysis of fMRI studies comparing high-quality and low-quality encoding to explore the neural correlates of mind-wandering. Key findings show that activation during mind-wandering is closely associated with four specific subnetworks: Default Mode Network-A, Frontoparietal Network-B and -C, and Ventral Attention Network-B. In contrast, deactivation primarily occurs within Dorsal Attention Network-A, Frontoparietal Network-A, and Default Mode Network-B and -C. These findings offer empirical support for several prominent theoretical accounts of mind-wandering, including those emphasizing internal cognition, perceptual decoupling, executive control (both failure and engagement), and reduced filtering. These results highlight the importance of a fine-grained, network-based approach to understanding the complex neural dynamics of mind-wandering.</p>\",\"PeriodicalId\":51081,\"journal\":{\"name\":\"Journal of Cognitive Neuroscience\",\"volume\":\" \",\"pages\":\"1-24\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2025-05-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Cognitive Neuroscience\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1162/jocn_a_02343\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cognitive Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1162/jocn_a_02343","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
Neural Correlates of Mind-wandering during Encoding Tasks: A Meta-analysis of 64 Functional Magnetic Resonance Imaging Studies.
Our minds frequently drift from the task at hand to other mental content, a process commonly referred to as mind-wandering. Task focus typically leads to high-quality encoding of task events, whereas mind-wandering tends to result in low-quality encoding. This study conducted a meta-analysis of fMRI studies comparing high-quality and low-quality encoding to explore the neural correlates of mind-wandering. Key findings show that activation during mind-wandering is closely associated with four specific subnetworks: Default Mode Network-A, Frontoparietal Network-B and -C, and Ventral Attention Network-B. In contrast, deactivation primarily occurs within Dorsal Attention Network-A, Frontoparietal Network-A, and Default Mode Network-B and -C. These findings offer empirical support for several prominent theoretical accounts of mind-wandering, including those emphasizing internal cognition, perceptual decoupling, executive control (both failure and engagement), and reduced filtering. These results highlight the importance of a fine-grained, network-based approach to understanding the complex neural dynamics of mind-wandering.