Christina Yu;Shenyang Huang;Cortney M. Howard;Mariam Hovhannisyan;Alex Clarke;Roberto Cabeza;Simon W. Davis
{"title":"Subsequent Memory Effects in Cortical Pattern Similarity Differ by Semantic Class","authors":"Christina Yu;Shenyang Huang;Cortney M. Howard;Mariam Hovhannisyan;Alex Clarke;Roberto Cabeza;Simon W. Davis","doi":"10.1162/jocn_a_02238","DOIUrl":"10.1162/jocn_a_02238","url":null,"abstract":"Although living and nonliving stimuli are known to rely on distinct brain regions during perception, it is largely unknown if their episodic memory encoding mechanisms differ as well. To investigate this issue, we asked participants to encode object pictures (e.g., a picture of a tiger) and to retrieve them later in response to their names (e.g., word “tiger”). For each of four semantic classes (living-animate, living-inanimate, nonliving-large, and nonliving-small), we examined differences in the similarity in activation patterns (neural pattern similarity [NPS]) for subsequently remembered versus forgotten items. Higher NPS for remembered items suggests an advantage of within-class item similarity, whereas lower NPS for remembered items indicates an advantage for item distinctiveness. We expect NPS within class-specific regions to be higher for remembered than for forgotten items. For example, the parahippocampal cortex has a well-known role in scene processing [Aminoff, E. M., Kveraga, K., & Bar, M. The role of the parahippocampal cortex in cognition. Trends in Cognitive Sciences, 17, 379–390, 2013], and the anterior temporal and inferior frontal gyrus have well-known roles in object processing [Clarke, A., & Tyler, L. K. Object-specific semantic coding in human perirhinal cortex. Journal of Neuroscience, 34, 4766–4775, 2014]. As such, we expect to see higher NPS for remembered items in these regions pertaining to scenes and objects, respectively. Consistent with this hypothesis, in fusiform, parahippocampal, and retrosplenial regions, higher NPS predicted memory for subclasses of nonliving objects, whereas in the left inferior frontal and left retrosplenial regions, lower NPS predicted memory for subclasses of living objects. Taken together, the results support the idea that subsequent memory depends on a balance of similarity and distinctiveness and demonstrate that the neural mechanisms of episodic encoding differ across semantic categories.","PeriodicalId":51081,"journal":{"name":"Journal of Cognitive Neuroscience","volume":"37 1","pages":"155-166"},"PeriodicalIF":3.1,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141972313","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Investigating the Neural Basis of the Loud-first Principle of the Iambic–Trochaic Law","authors":"Fernando Llanos;Teagan Stump;Megan Crowhurst","doi":"10.1162/jocn_a_02241","DOIUrl":"10.1162/jocn_a_02241","url":null,"abstract":"The perception of rhythmic patterns is crucial for the recognition of words in spoken languages, yet it remains unclear how these patterns are represented in the brain. Here, we tested the hypothesis that rhythmic patterns are encoded by neural activity phase-locked to the temporal modulation of these patterns in the speech signal. To test this hypothesis, we analyzed EEGs evoked with long sequences of alternating syllables acoustically manipulated to be perceived as a series of different rhythmic groupings in English. We found that the magnitude of the EEG at the syllable and grouping rates of each sequence was significantly higher than the noise baseline, indicating that the neural parsing of syllables and rhythmic groupings operates at different timescales. Distributional differences between the scalp topographies associated with each timescale suggests a further mechanistic dissociation between the neural segmentation of syllables and groupings. In addition, we observed that the neural tracking of louder syllables, which in trochaic languages like English are associated with the beginning of rhythmic groupings, was more robust than the neural tracking of softer syllables. The results of further bootstrapping and brain–behavior analyses indicate that the perception of rhythmic patterns is modulated by the magnitude of grouping alternations in the neural signal. These findings suggest that the temporal coding of rhythmic patterns in stress-based languages like English is supported by temporal regularities that are linguistically relevant in the speech signal.","PeriodicalId":51081,"journal":{"name":"Journal of Cognitive Neuroscience","volume":"37 1","pages":"14-27"},"PeriodicalIF":3.1,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142134390","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pi-Chun Huang;Ludivine A. P. Schils;Iring Koch;Denise N. Stephan;Shulan Hsieh
{"title":"Age-related Electrophysical Correlates of Cross-modal Attention Switching","authors":"Pi-Chun Huang;Ludivine A. P. Schils;Iring Koch;Denise N. Stephan;Shulan Hsieh","doi":"10.1162/jocn_a_02248","DOIUrl":"10.1162/jocn_a_02248","url":null,"abstract":"The human experience demands seamless attentional switches between sensory modalities. Aging raises questions about how declines in auditory and visual processing affect cross-modal attention switching. This study used a cued cross-modal attention-switching paradigm where visual and auditory stimuli were simultaneously presented on either spatially congruent or incongruent sides. A modality cue indicated the target modality, requiring a spatially left versus right key-press response. EEG recordings were collected during task performance. We investigated whether the mixing costs (decreased performance for repetition trials in a mixed task compared with a single task) and switch costs (decreased performance for a switch of target modality compared with a repetition) in cross-modal attention-switching paradigms would exhibit similarities in terms of behavioral performance and the ERP components to those observed in the traditional unimodal attention-switching paradigms. Specifically, we focused on the ERP components: cue-locked P3 (mixing/switch-related increased positivity), target-locked P3 (mixing/switch-related decreased positivity), and target-locked lateralized readiness potential (mixing/switch-related longer latency). In addition, we assessed how aging impacts cross-modal attention-switching performance. Results revealed that older adults exhibited more pronounced mixing and switch costs than younger adults, especially when visual and auditory stimuli were presented on incongruent sides. ERP findings showed increased cue-locked P3 amplitude, prolonged cue-locked P3 latency, decreased target-locked P3 amplitude, prolonged target-locked P3 latency in association with switch costs, and prolonged onset latency of the target-locked lateralized readiness potential in association with the mixing costs. Age-related effects were significant only for cue-locked P3 amplitude, cue-locked P3 latency (switch-related), and target-locked P3 latency (switch-related). These findings suggest that the larger mixing costs and switch costs in older adults were due to the inefficient use of modality cues to update a representation of the relevant task sets, requiring more processing time for evaluating and categorizing the target.","PeriodicalId":51081,"journal":{"name":"Journal of Cognitive Neuroscience","volume":"37 1","pages":"43-62"},"PeriodicalIF":3.1,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10824758","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142249917","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Tony Ro;Allison M. Pierce;Michaela Porubanova;Miriam San Lucas
{"title":"Neural Correlates of Visual Feature Binding","authors":"Tony Ro;Allison M. Pierce;Michaela Porubanova;Miriam San Lucas","doi":"10.1162/jocn_a_02243","DOIUrl":"10.1162/jocn_a_02243","url":null,"abstract":"We perceive visual objects as unified although different brain areas process different features. An attentional mechanism has been proposed to be involved with feature binding, as evidenced by observations of binding errors (i.e., illusory conjunctions) when attention is diverted. However, the neural underpinnings of this feature binding are not well understood. We examined the neural mechanisms of feature binding by recording EEG during an attentionally demanding discrimination task. Unlike prestimulus alpha oscillatory activity and early ERPs (i.e., the N1 and P1 components), the N1pc, reflecting stimulus-evoked spatial attention, was reduced for errors relative to correct responses and illusory conjunctions. However, the later sustained posterior contralateral negativity, reflecting visual short-term memory, was reduced for illusory conjunctions and errors compared with correct responses. Furthermore, binding errors were associated with distinct posterior lateralized activity during a 200- to 300-msec window. These results implicate a temporal binding window that integrates visual features after stimulus-evoked attention but before encoding into visual short-term memory.","PeriodicalId":51081,"journal":{"name":"Journal of Cognitive Neuroscience","volume":"37 1","pages":"1-13"},"PeriodicalIF":3.1,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142134391","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Electroencephalographic Responses to the Number of Objects in Partially Occluded and Uncovered Scenes","authors":"Cemre Baykan;Alexander C. Schütz","doi":"10.1162/jocn_a_02264","DOIUrl":"10.1162/jocn_a_02264","url":null,"abstract":"Perceptual completion is ubiquitous when estimating properties such as the shape, size, or number of objects in partially occluded scenes. Behavioral experiments showed that the number of hidden objects is underestimated in partially occluded scenes compared with an estimation based on the density of visible objects and the amount of occlusion. It is still unknown at which processing level this (under)estimation of the number of hidden objects occurs. We studied this question using a passive viewing task in which observers viewed a game board that was initially partially occluded and later was uncovered to reveal its hidden parts. We simultaneously measured the electroencephalographic responses to the partially occluded board presentation and its uncovering. We hypothesized that if the underestimation is a result of early sensory processing, it would be observed in the activities of P1 and N1, whereas if it is because of higher level processes such as expectancy, it would be reflected in P3 activities. Our data showed that P1 amplitude increased with numerosity in both occluded and uncovered states, indicating a link between P1 and simple stimulus features. The N1 amplitude was highest when both the initially visible and uncovered areas of the board were completely filled with game pieces, suggesting that the N1 component is sensitive to the overall Gestalt. Finally, we observed that P3 activity was reduced when the density of game pieces in the uncovered parts matched the initially visible parts, implying a relationship between the P3 component and expectation mismatch. Overall, our results suggest that inferences about the number of hidden items are reflected in high-level processing.","PeriodicalId":51081,"journal":{"name":"Journal of Cognitive Neuroscience","volume":"37 1","pages":"227-238"},"PeriodicalIF":3.1,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10824736","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142480180","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Floortje G. Bouwkamp;Floris P. de Lange;Eelke Spaak
{"title":"Spatial Predictive Context Speeds Up Visual Search by Biasing Local Attentional Competition","authors":"Floortje G. Bouwkamp;Floris P. de Lange;Eelke Spaak","doi":"10.1162/jocn_a_02254","DOIUrl":"10.1162/jocn_a_02254","url":null,"abstract":"The human visual system is equipped to rapidly and implicitly learn and exploit the statistical regularities in our environment. Within visual search, contextual cueing demonstrates how implicit knowledge of scenes can improve search performance. This is commonly interpreted as spatial context in the scenes becoming predictive of the target location, which leads to a more efficient guidance of attention during search. However, what drives this enhanced guidance is unknown. First, it is under debate whether the entire scene (global context) or more local context drives this phenomenon. Second, it is unclear how exactly improved attentional guidance is enabled by target enhancement and distractor suppression. In the present magnetoencephalography experiment, we leveraged rapid invisible frequency tagging to answer these two outstanding questions. We found that the improved performance when searching implicitly familiar scenes was accompanied by a stronger neural representation of the target stimulus, at the cost specifically of those distractors directly surrounding the target. Crucially, this biasing of local attentional competition was behaviorally relevant when searching familiar scenes. Taken together, we conclude that implicitly learned spatial predictive context improves how we search our environment by sharpening the attentional field.","PeriodicalId":51081,"journal":{"name":"Journal of Cognitive Neuroscience","volume":"37 1","pages":"28-42"},"PeriodicalIF":3.1,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142331917","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Optimal Word Reading Rate as Evidenced by Frequency-tagging Electrophysiology.","authors":"Marion Marchive, Bruno Rossion, Aliette Lochy","doi":"10.1162/jocn_a_02286","DOIUrl":"https://doi.org/10.1162/jocn_a_02286","url":null,"abstract":"<p><p>Fast periodic visual stimulation (FPVS) coupled with EEG has been used for a decade to measure word-selective neural responses in (a)typical adults and developmental readers. Here, we used this FPVS-EEG approach to evaluate suitable and optimal stimulation frequency rates for prelexical and lexical word-selective responses and relate these rates to typical reading speed and interindividual variability in reading performance. EEG was recorded in 41 healthy adults who viewed words inserted periodically (1 Hz) at four different stimulation frequency rates (4 Hz, 6 Hz, 10 Hz, and 20 Hz). At all these stimulation rates but the highest (20 Hz), we found typical left-lateralized, word-selective, occipito-temporal responses, larger for the prelexical (words in nonwords) than lexical (words in pseudowords) contrast. Although significant responses were found at all frequency rates, these responses were negligible at 20 Hz, without any evidence of left lateralization at this frequency. The largest occipito-temporal response was found at a 4-Hz base rate in both hemispheres for the prelexical contrast, with increased left lateralization for the lexical discrimination. Moreover, word-selective responses for this discrimination (lexical), only at 4 Hz, were related to reading speed. The optimal 4-Hz rate finding is in line with the mean reading speed for expert readers as assessed during text reading. Overall, these findings further validate and optimize the FPVS-EEG approach for rapid implicit measurement of word-selective neural responses.</p>","PeriodicalId":51081,"journal":{"name":"Journal of Cognitive Neuroscience","volume":" ","pages":"1-21"},"PeriodicalIF":3.1,"publicationDate":"2024-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142958453","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Kyoko Leaman, Nadira Yusif Rodriguez, Aarit Ahuja, Debaleena Basu, Theresa H McKim, Theresa M Desrochers
{"title":"Monkey Lateral Prefrontal Cortex Subregions Differentiate between Perceptual Exposure to Visual Stimuli.","authors":"Kyoko Leaman, Nadira Yusif Rodriguez, Aarit Ahuja, Debaleena Basu, Theresa H McKim, Theresa M Desrochers","doi":"10.1162/jocn_a_02291","DOIUrl":"10.1162/jocn_a_02291","url":null,"abstract":"<p><p>Each day, humans must parse visual stimuli with varying amounts of perceptual experience, ranging from incredibly familiar to entirely new. Even when choosing a novel to buy at a bookstore, one sees covers they have repeatedly experienced intermixed with recently released titles. Visual exposure to stimuli has distinct neural correlates in the lateral prefrontal cortex (LPFC) of nonhuman primates. However, it is currently unknown if this function may be localized to specific subregions within LPFC. Specifically, we aimed to determine whether the posterior fundus of Area 46 (p46f), an area that responds to deviations from learned sequences, also responds to less frequently presented stimuli outside of the sequential context. We compare responses in p46f to the adjacent subregion, posterior ventral area 46 (p46v), which we propose may be more likely to show exposure-dependent responses due to its proximity to novelty-responsive regions. To test whether p46f or p46v represent perceptual exposure, we performed awake fMRI on three male monkeys as they observed visual stimuli that varied in their number of daily presentations. Here, we show that p46v, but not p46f, shows preferential activation to stimuli with low perceptual exposure, further localizing exposure-dependent effects in monkey LPFC. These results align with previous research that has found novelty responses in ventral LPFC and are consistent with the proposal that p46f performs a sequence-specific function. Furthermore, they expand on our knowledge of the specific role of LPFC subregions and localize perceptual exposure processing within this broader brain region.</p>","PeriodicalId":51081,"journal":{"name":"Journal of Cognitive Neuroscience","volume":" ","pages":"1-13"},"PeriodicalIF":3.1,"publicationDate":"2024-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142958426","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Distributed Representations for Cognitive Control in Frontal Medial Cortex.","authors":"Thomas R Colin, Iris Ikink, Clay B Holroyd","doi":"10.1162/jocn_a_02285","DOIUrl":"https://doi.org/10.1162/jocn_a_02285","url":null,"abstract":"<p><p>In natural and artificial neural networks, modularity and distributed structure afford complementary but competing benefits. The former allows for hierarchical representations that can flexibly recombine modules to address novel problems, whereas the latter can benefit from less constrained training, potentially uncovering fruitful statistical regularities. Here, we investigate these competing demands in the context of human sequential behavior. First, we explore this setting by comparing the properties of several recurrent neural network models. We find that explicit hierarchical structure by itself fails to provide a critical performance advantage when compared with a \"flat\" model that does not incorporate hierarchical structure. However, hierarchy appears to facilitate cognitive control processes that support nonroutine behaviors and behaviors that are carried out under computational stress. Second, we compare these models against fMRI data using representational similarity analysis. We find that a model that incorporates so-called wiring costs in the cost function, which produces a hierarchically organized gradient of representational structure across the hidden layer of the neural network, best accounts for fMRI data collected from human participants in a previous study [Holroyd, C. B., Ribas-Fernandes, J. J. F., Shahnazian, D., Silvetti, M., & Verguts, T., Human midcingulate cortex encodes distributed representations of task progress. Proceedings of the National Academy of Sciences, U.S.A., 115, 6398-6403, 2018]. The results reveal that the ACC encodes distributed representations of sequential task context along a rostro-caudal gradient of abstraction: Rostral ACC encodes relatively abstract and temporally extended patterns of activity compared with those encoded by caudal ACC. These results provide insight into the role of ACC in motivation and cognitive control.</p>","PeriodicalId":51081,"journal":{"name":"Journal of Cognitive Neuroscience","volume":" ","pages":"1-28"},"PeriodicalIF":3.1,"publicationDate":"2024-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142958423","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Debunking the Myth of Excitatory and Inhibitory Repetitive Transcranial Magnetic Stimulation in Cognitive Neuroscience Research.","authors":"Sara J Hussain, Michael V Freedberg","doi":"10.1162/jocn_a_02288","DOIUrl":"https://doi.org/10.1162/jocn_a_02288","url":null,"abstract":"<p><p>Repetitive TMS (rTMS) is a powerful neuroscientific tool with the potential to noninvasively identify brain-behavior relationships in humans. Early work suggested that certain rTMS protocols (e.g., continuous theta-burst stimulation, intermittent theta-burst stimulation, high-frequency rTMS, low-frequency rTMS) predictably alter the probability that cortical neurons will fire action potentials (i.e., change cortical excitability). However, despite significant methodological, conceptual, and technical advances in rTMS research over the past few decades, overgeneralization of early rTMS findings has led to a stubbornly persistent assumption that rTMS protocols by their nature induce behavioral and/or physiological inhibition or facilitation, even when they are applied to nonmotor cortical sites or under untested circumstances. In this Perspectives article, we offer a \"public service announcement\" that summarizes problems with these assumptions, highlighting limitations of seminal studies that inspired them and results of contemporary studies that violate them. Next, we discuss problems associated with holding these assumptions, including making brain-behavior inferences without confirming the locality and directionality of neurophysiological changes. Then, we emphasize results of recent studies showing that the effects of rTMS on neurophysiological metrics and their associated behaviors can be caused by mechanisms other than binary changes in excitability of the stimulated brain region or network. Finally, we provide recommendations for researchers to eliminate the misguided assumption that specific rTMS protocols are inherently excitatory or inhibitory when designing and interpreting their own work. Collectively, we contend that no rTMS protocol is by its nature either excitatory or inhibitory, and that researchers must use caution with these terms when forming experimental hypotheses and testing brain-behavior relationships.</p>","PeriodicalId":51081,"journal":{"name":"Journal of Cognitive Neuroscience","volume":" ","pages":"1-14"},"PeriodicalIF":3.1,"publicationDate":"2024-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142958445","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}