Andrew M. Liebhold, Rebecca M. Turner, Charles R. Bartlett, Cleo Bertelsmeier, Rachael E. Blake, Eckehard G. Brockerhoff, Charlotte E. Causton, Janis N. Matsunaga, Stuart H. McKamey, Helen F. Nahrung, Christopher L. Owen, Deepa S. Pureswaran, Alain Roques, Scott A. Schneider, Allen F. Sanborn, Takehiko Yamanaka
{"title":"Why so many Hemiptera invasions?","authors":"Andrew M. Liebhold, Rebecca M. Turner, Charles R. Bartlett, Cleo Bertelsmeier, Rachael E. Blake, Eckehard G. Brockerhoff, Charlotte E. Causton, Janis N. Matsunaga, Stuart H. McKamey, Helen F. Nahrung, Christopher L. Owen, Deepa S. Pureswaran, Alain Roques, Scott A. Schneider, Allen F. Sanborn, Takehiko Yamanaka","doi":"10.1111/ddi.13911","DOIUrl":"10.1111/ddi.13911","url":null,"abstract":"<div>\u0000 \u0000 \u0000 <section>\u0000 \u0000 <h3> Aim</h3>\u0000 \u0000 <p>The Hemiptera is the fifth-largest insect order but among non-native insect species is approximately tied with the Coleoptera as the most species-rich insect order (Hemiptera comprise 20% more species than in world fauna). This over-representation may result from high propagule pressure or from high species invasiveness. Here, we assess the reasons for over-representation in this group by analysing geographical, temporal and taxonomic variation in numbers of historical invasions.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Location</h3>\u0000 \u0000 <p>Global.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Method</h3>\u0000 \u0000 <p>We assembled lists of historical Hemiptera invasions in 12 world regions, countries or islands (Australia, Chile, Europe, New Zealand, North America, South Africa, South Korea, Japan and the Galapagos, Hawaiian, Okinawa and Ogasawara Islands) and border interception data from nine countries (Australia, Canada, European Union, United Kingdom, Hawaii, Japan, New Zealand, South Korea, USA mainland and South Africa). Using these data, we identified hemipteran superfamilies that are historically over-represented among established non-native species, and superfamilies that are over-represented among arrivals (proxied by interceptions). We also compared temporal patterns of establishments among hemipteran suborders and among regions.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Results</h3>\u0000 \u0000 <p>Across all regions, patterns of over- and under-representation were similar. The Aphidoidea, Coccoidea, Aleyrodoidea, Cimicoidea and Phylloxeroida were over-represented among non-native species. These same superfamilies were not consistently over-represented among intercepted species indicating that propagule pressure does not completely explain the tendency of some Hemiptera to be over-represented among invasions. Asexual reproduction is common in most over-represented superfamilies and this trait may be key to explaining high invasion success in these superfamilies.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Conclusions</h3>\u0000 \u0000 <p>We conclude that both propagule pressure and species invasiveness are drivers of high invasion success in the Sternorrhyncha suborder (aphids, scales, whiteflies) and this group plays a major role in the exceptional invasion success of Hemiptera in general. The high historical rates of invasion by Sternorrhyncha species provide justification for biosecurity measure focusing on exclusion of this group.</p>\u0000 </section>\u0000 </div>","PeriodicalId":51018,"journal":{"name":"Diversity and Distributions","volume":"30 12","pages":""},"PeriodicalIF":4.6,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/ddi.13911","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142212523","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Kai Feng, Péter Takács, István Czeglédi, Tibor Erős
{"title":"Patterns and drivers in the functional diversity decomposition of invaded stream fish communities","authors":"Kai Feng, Péter Takács, István Czeglédi, Tibor Erős","doi":"10.1111/ddi.13914","DOIUrl":"10.1111/ddi.13914","url":null,"abstract":"<div>\u0000 \u0000 \u0000 <section>\u0000 \u0000 <h3> Aim</h3>\u0000 \u0000 <p>The assembly of real-world ecological communities in human-modified landscapes is influenced by a complex interplay of spatial, temporal, environmental and invasion gradients. However, understanding the relative importance of these drivers and their interactions in shaping functional assembly remains elusive. Our study aimed to investigate the relative influence of these drivers on the functional assembly of a stream fish metacommunity.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Location</h3>\u0000 \u0000 <p>Streams of the Lake Balaton catchment, Hungary.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Methods</h3>\u0000 \u0000 <p>We analysed a long-term (18-year) dataset of the stream fish metacommunity, focusing on changes in functional diversity (Q), redundancy (R) and species dominance (D). Ternary diagrams were utilized to decompose functional diversity into Q, R and D components and to visualize diversity patterns. Linear mixed-effect regression and separate structural equation models were employed to identify significant drivers of Q, R and D.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Results</h3>\u0000 \u0000 <p>Native fish communities exhibited low functional diversity (Q) but high redundancy (R) and dominance (D), indicating functional convergence and dominance. Stream habitat size, network position and associated spatial, physical and chemical gradients emerged as consistently significant drivers of D and R. Changes in Q were additionally linked to non-native community properties and subtle shifts in land use and within-stream habitat characteristics.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Main Conclusions</h3>\u0000 \u0000 <p>Our findings suggest that both environmental filtering and interspecies interactions, particularly trait similarity between invaders and natives shape functional assembly of stream fish metacommunities. Despite minimal temporal directional changes, environmental drivers predominantly influence long-term diversity patterns of native fish communities, overshadowing invasion effects. Our findings underscore the importance of considering both environmental filtering mechanisms and interspecies interactions in understanding functional assembly. Additionally, the joint application of diversity decomposition frameworks with predictive modelling provides comprehensive insight into patterns of functional diversity and assembly across ecological communities.</p>\u0000 </section>\u0000 </div>","PeriodicalId":51018,"journal":{"name":"Diversity and Distributions","volume":"30 12","pages":""},"PeriodicalIF":4.6,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/ddi.13914","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142212522","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Daniel A. Villar, Edwin R. Gutiérrez Tito, Paola Velásquez‐Noriega, Anahi Cosky Paca‐Condori, Edmundo G. Moreno Terrazas, Alfredo Balcón Cuno, Ronald Hinojosa Cárdenas, Carmen Villanueva, Patrick Chapman, Luca Chiaverini, Jorgelina Marino, Andrew G. Gosler
{"title":"Problems with combining modelling and social science approaches to understand artisanal fisheries bycatch","authors":"Daniel A. Villar, Edwin R. Gutiérrez Tito, Paola Velásquez‐Noriega, Anahi Cosky Paca‐Condori, Edmundo G. Moreno Terrazas, Alfredo Balcón Cuno, Ronald Hinojosa Cárdenas, Carmen Villanueva, Patrick Chapman, Luca Chiaverini, Jorgelina Marino, Andrew G. Gosler","doi":"10.1111/ddi.13918","DOIUrl":"https://doi.org/10.1111/ddi.13918","url":null,"abstract":"AimArtisanal fisheries account for 40% of the world's fisheries catch, yet its environmental impacts remain poorly understood. This is especially the case in developing countries. In this study, we sought to integrate Local Fisher's Knowledge with distribution modelling to estimate the annual bycatch of Titicaca Grebe (<jats:italic>Rollandia microptera</jats:italic>), an endangered endemic bird from Lake Titicaca whose main anthropogenic threat is bycatch.LocationLake Titicaca, Peru and Bolivia.MethodsWe conducted transect and point counts of fishing nets in March–September 2022 and conducted interviews with fishers across the Lake Titicaca region. Using bathymetry, distance from shore, distance from a settlement, distance from the protected area, presence/absence of aquaculture, distance from aquaculture, and wetland cover, we constructed a distribution model of fisheries using maximum entropy modelling. We conducted interviews with fishers asking about the frequency of grebe bycatch and conducted short‐term monitoring at various sites while conducting transect points for dead grebes.ResultsWe estimate 3270 km<jats:sup>2</jats:sup> of the surface area of Lake Titicaca is used for fishing, which amounts to 39.40% of the lake's surface area. The area under the curve (AUC) of the distribution model was 0.89 and the True Skill Statistic was 0.67, which suggests maximum entropy modelling can model fisheries occurrence. The results of our interviews suggested a biologically implausible large number of grebes caught as bycatch annually. The cultural context of the interviews, including potential influences of non‐response and social‐desirability bias, being with fishers who often view the Titicaca Grebe as a nuisance species, might have caused over‐reporting of bycatch and hence led to these implausible figures.Main ConclusionsIt is possible to map fisheries using distribution models as one might with species. However, obtaining accurate measures of fisheries bycatch through interviews is more difficult, due to cultural factors which affect the accuracy in fisher's responses. While we hope that this method provides a low‐cost alternative to monitoring, it is not a suitable replacement for it.","PeriodicalId":51018,"journal":{"name":"Diversity and Distributions","volume":"19 1","pages":""},"PeriodicalIF":4.6,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142212524","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A race against extinction: The challenge to overcome the Linnean amphibian shortfall in tropical biodiversity hotspots","authors":"Albert Carné, David R. Vieites","doi":"10.1111/ddi.13912","DOIUrl":"10.1111/ddi.13912","url":null,"abstract":"<div>\u0000 \u0000 \u0000 <section>\u0000 \u0000 <h3> Aim</h3>\u0000 \u0000 <p>There is an urgent need to explore, characterize, describe and preserve as many species as possible to prevent their decline. Tropical biodiversity hotspots harbour most of the known land diversity and vast amounts of undiscovered and undescribed species. Here, we quantify the taxonomically unassessed amphibian species richness in Madagascar, one of the best-studied and explored tropical hotspots worldwide, to identify knowledge gaps and conservation implications.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Location</h3>\u0000 \u0000 <p>Madagascar.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Time Period</h3>\u0000 \u0000 <p>Present.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Major Taxa Studied</h3>\u0000 \u0000 <p>Amphibians.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Methods</h3>\u0000 \u0000 <p>We used the Madagascar amphibian fauna as a model to unveil neglected diversity by analysing 10,873 mitochondrial sequences using species delimitation algorithms and incorporating all previously published bioacoustics, distributional, morphological and nuclear data with an integrative approach.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Results</h3>\u0000 \u0000 <p>Besides the currently described 413 species, we identified 408 divergent lineages. Among this, 310 fit the category of candidate species pending a taxonomic assessment, while 98 are considered deep conspecific lineages. These figures suggest that species richness could be twice as high as represented in the current taxonomy. Geographically, most of these candidate species occur in well-studied areas within the island.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Main Conclusions</h3>\u0000 \u0000 <p>Despite being one of the best-studied and explored tropical countries worldwide for amphibians, we found that many species are awaiting a taxonomic assessment in Madagascar. Paradoxically, this unassessed diversity concentrates on highly explored regions, emphasizing the importance of exploring and inventorying new areas. Our results highlight the magnitude of the Linnean and Wallacean shortfalls, affecting both species richness estimates and the distribution ranges and biogeographic setting known for this fauna. Current conservation efforts should consider this novel diversity and unexplored areas as they will likely harbour yet many new species to be discovered. We expect similar patterns across less studied tropical realm","PeriodicalId":51018,"journal":{"name":"Diversity and Distributions","volume":"30 12","pages":""},"PeriodicalIF":4.6,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/ddi.13912","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142212525","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A. Sofía Nanni, Arash Ghoddousi, Alfredo Romero-Muñoz, Matthias Baumann, Jamie Burton, Micaela Camino, Julieta Decarre, Felipe Martello, André Luis Regolin, Tobias Kuemmerle
{"title":"Mapping opportunities and barriers for coexistence between people and pumas in the Argentine Dry Chaco","authors":"A. Sofía Nanni, Arash Ghoddousi, Alfredo Romero-Muñoz, Matthias Baumann, Jamie Burton, Micaela Camino, Julieta Decarre, Felipe Martello, André Luis Regolin, Tobias Kuemmerle","doi":"10.1111/ddi.13920","DOIUrl":"10.1111/ddi.13920","url":null,"abstract":"<div>\u0000 \u0000 \u0000 <section>\u0000 \u0000 <h3> Aim</h3>\u0000 \u0000 <p>The persistence of large carnivore populations depends on their survival outside protected areas, where they often impact local livelihoods through livestock depredation. Understanding the impacts of human behaviour on large carnivores in shared landscapes is thus important but is often overlooked in habitat assessments or conservation planning. We employed an integrated approach that considers human behaviour and landscape structure metrics to assess the potential for human-puma (<i>Puma concolor</i>) coexistence in the Chaco region, a global deforestation and defaunation hotspot.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Location</h3>\u0000 \u0000 <p>Argentine Dry Chaco (~490,000 km<sup>2</sup>).</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Methods</h3>\u0000 \u0000 <p>We identified suitable puma habitat patches and movement areas using occupancy modelling and combined it with a spatial human-puma conflict risk model based on interview data to identify ‘safe’ and ‘unsafe’ habitat patches. We then used resistance surfaces to identify ‘safe’ and ‘unsafe’ movement areas, as well as ‘severed’ movement areas where anthropogenic land conversion inhibits movement.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Results</h3>\u0000 \u0000 <p>Safe puma habitat patches (i.e., suitable and safe) covered 29% of the region, whereas attractive sinks (i.e., suitable but risky) represented 12%. Movement areas corresponded to 60% of the region, while conflict risk and high landscape resistance undermined connectivity: unsafe and severed movement areas covered 10% and 11% of the region, respectively. Nearly 98% of safe habitat and movement areas occurred outside protected areas.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Main Conclusions</h3>\u0000 \u0000 <p>We provide an integrated conceptual framework and spatial explicit template for a three-pronged conservation strategy to (1) protect safe habitat and movement areas, (2) mitigate livestock depredation in attractive sinks and unsafe movement areas and (3) restore landscape in severed and matrix areas to improve ecological connectivity. This would allow pumas to maintain viable populations while reducing negative impacts on local people. More generally, we show how integrating habitat and conflict risk models can reveal opportunities and challenges for human-carnivore coexistence beyond protected areas.</p>\u0000 </section>\u0000 </div>","PeriodicalId":51018,"journal":{"name":"Diversity and Distributions","volume":"30 10","pages":""},"PeriodicalIF":4.6,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/ddi.13920","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142226860","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Cover page","authors":"","doi":"10.1111/ddi.13871","DOIUrl":"https://doi.org/10.1111/ddi.13871","url":null,"abstract":"<p>The cover image relates to Research Article https://doi.org/10.1111/ddi.13903 “Biogeographic patterns of Pacific white-sided dolphins based on long-term passive acoustic records” by Alksne et al. An adult and calf pair of Pacific white-sided dolphins porpoising off the coast of Southern California. Photo credit, Katherine Whitaker, California Cooperative Oceanic Fisheries Investigation (CalCOFI), taken under NMFS permit no. 22835.\u0000\u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure>\u0000 </p>","PeriodicalId":51018,"journal":{"name":"Diversity and Distributions","volume":"30 9","pages":""},"PeriodicalIF":4.6,"publicationDate":"2024-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/ddi.13871","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142013619","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"How would estimation of geographic range shifts of marine fishes be different when using occurrence and abundance data?","authors":"Yin-Zheng Lai, Ying-Chung Jimmy Lin, Chia-Ying Ko","doi":"10.1111/ddi.13919","DOIUrl":"10.1111/ddi.13919","url":null,"abstract":"<div>\u0000 \u0000 \u0000 <section>\u0000 \u0000 <h3> Aim</h3>\u0000 \u0000 <p>Geographic range shifts are a common species' response to climate change. While occurrence data are commonly used to estimate species' geographical range shifts, ongoing debate suggests that local abundance data may be increasingly important for the estimates, but few studies have investigated differences between the above two types of data. We aimed to explore whether occurrence and abundance data would result in different patterns of geographic range shifts for marine fishes.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Location</h3>\u0000 \u0000 <p>Northeast US Continental Shelf, North Sea, and East Bering Sea.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Methods</h3>\u0000 \u0000 <p>We used bottom trawl datasets since 1968 in the three large marine communities to assess whether data types would affect estimated shifts in marine fish species. The range centroids of individual species were first estimated every year and linear regressions were fitted to estimate shift rates in both longitudinal and latitudinal directions. The average range centroids of the last 5 years were used to compare differences between the data types in species' shifts. We then grouped species by traits to overview species compositions.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Results</h3>\u0000 \u0000 <p>Significant differences in shift trends between regressions based on annual occurrence- and abundance-based range centroids were found in species' longitudinal shifts, particularly in the Northeast US Continental Shelf and North Sea. Approximately 38.5%–45.9% of fish species in the large marine communities had inconsistent shift directions when estimated by different data types. In comparison with the average range centroids of the last 5 years between the two data types, large changes were identified in the magnitudes of the shift distances towards the east and west. Fish species with inconsistent shifts between the two data types were mostly composed of commercial and demersal species.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Main Conclusions</h3>\u0000 \u0000 <p>The results provide observed differences over decades and suggest caution on the estimation of species' geographic range shifts using occurrence and abundance data and highlight the differences for future assessments of marine species shifts under climate change.</p>\u0000 </section>\u0000 </div>","PeriodicalId":51018,"journal":{"name":"Diversity and Distributions","volume":"30 10","pages":""},"PeriodicalIF":4.6,"publicationDate":"2024-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/ddi.13919","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142212526","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Andres Felipe Suárez-Castro, Orlando Acevedo-Charry, Luis Hernando Romero Jiménez, Elkin A. Noguera-Urbano, Fernando Ayerbe-Quiñones, Natalia Ocampo-Peñuela
{"title":"Integrating multiple data sources to develop range and area of habitat maps tailored for local contexts","authors":"Andres Felipe Suárez-Castro, Orlando Acevedo-Charry, Luis Hernando Romero Jiménez, Elkin A. Noguera-Urbano, Fernando Ayerbe-Quiñones, Natalia Ocampo-Peñuela","doi":"10.1111/ddi.13917","DOIUrl":"10.1111/ddi.13917","url":null,"abstract":"<div>\u0000 \u0000 \u0000 <section>\u0000 \u0000 <h3> Aim</h3>\u0000 \u0000 <p>Global species distribution maps tend to be limited to a reduced number of species or are too coarse to inform ecological research and conservation actions at local scales. We developed a workflow to generate species range and area of habitat (AOH) maps tailored to local contexts based on expert information, community science observations and an ecoregion approach. We also developed a workflow to increase transparency in range maps and map the areas of uncertainty at the species and community levels using community science data.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Location</h3>\u0000 \u0000 <p>North-Western South America.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Methods</h3>\u0000 \u0000 <p>We combined expert knowledge, community science observations, a new map of ecoregions for Colombia and national maps of land cover to produce species range and AOH maps for 94% of the terrestrial resident birds of Colombia (1633 species). We used community science records to validate the range maps and produce a species-specific layer of uncertainty by calculating the distance between pixels classified as habitat and species occurrence points.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Results</h3>\u0000 \u0000 <p>Compared to previous efforts, the new maps have higher species coverage and produced better validation scores for more than 50% of the species analysed. In addition, the produced maps also show macroecological patterns that follow natural boundaries, significantly improving the arbitrary patterns observed in previous mapping efforts. Uncertainty maps illustrate the spatial resolution and the extent at which these maps can be used with the highest confidence and highlight poorly surveyed areas that require extensive sampling.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Main Conclusions</h3>\u0000 \u0000 <p>Combining information from expert sources, field observations and broad macroecological patterns is key to improve AOH maps that are fitted to local applications. Our uncertainty analysis can also guide concerted national efforts to survey specific localities. Our workflow can be used in multiple regions, countries and for other taxa, and we expect that it will improve local estimates of biogeographical and species diversity patterns.</p>\u0000 </section>\u0000 </div>","PeriodicalId":51018,"journal":{"name":"Diversity and Distributions","volume":"30 10","pages":""},"PeriodicalIF":4.6,"publicationDate":"2024-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/ddi.13917","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142212527","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Wentong Xia, Zhongbo Miao, Kai Chen, Ying Lu, Sai Wang, Junying Zhu, Songguang Xie
{"title":"Seasonal patterns of juvenile fish assemblages in the surf zones of tropical sandy beaches along Gaolong Bay, Hainan Island, China","authors":"Wentong Xia, Zhongbo Miao, Kai Chen, Ying Lu, Sai Wang, Junying Zhu, Songguang Xie","doi":"10.1111/ddi.13913","DOIUrl":"10.1111/ddi.13913","url":null,"abstract":"<div>\u0000 \u0000 \u0000 <section>\u0000 \u0000 <h3> Aim</h3>\u0000 \u0000 <p>Surf zones are crucial nursery habitats for the early life stages of fish species associated with typical coastal ecosystems. However, little is known about the temporal patterns and drivers of fish assemblages in tropical surf zones. This study aimed to assess the (1) main changes in fish community structure throughout 1 year, (2) seasonal dynamic patterns in fish assemblages, and (3) key factors influencing fish assemblages in the tropical surf zones.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Location</h3>\u0000 \u0000 <p>Gaolong Bay, Wenchang City, Hainan Island, China.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Methods</h3>\u0000 \u0000 <p>Fish sampling was conducted monthly from June 2021 to May 2022 using a beach seine net. Fish species were identified using both morphological and molecular analyses. Kruskal–Wallis test, analysis of similarity, non-metric multidimensional scaling analysis, and similarity percentage analysis were used to investigate the temporal fish assemblage patterns. Generalised additive models and canonical correspondence analysis were used to assess how environmental variables influence fish assemblages.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Results</h3>\u0000 \u0000 <p>We identified 83 fish species, which were grouped into three ecotypes based on their primary habitat: coral reef-seagrass-associated species (CS) (35), mangrove-estuarine-associated species (ME) (30), and common coastal-estuarine-associated species (CE) (18). Most captured individuals were juveniles, and fish abundance and diversity were highest in May. Most CS species were abundant between March and May. ME and most CE species were dominant from June to August, and Mugilidae (CE) was abundant between October and February. Furthermore, surf fish assemblages were substantially influenced by tidal level, water temperature, conductivity, pH, turbidity, and dissolved oxygen.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Conclusions</h3>\u0000 \u0000 <p>Juvenile fish were abundant in May and fish species with three ecotypes alternate in the surf zones throughout the year. Counter to much current thinking, March maybe the spawn peak of most fish species in the studied area, and we suggest that the fishing ban period could start from March instead of May in the inshore areas of Hainan Island.</p>\u0000 </section>\u0000 </div>","PeriodicalId":51018,"journal":{"name":"Diversity and Distributions","volume":"30 10","pages":""},"PeriodicalIF":4.6,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/ddi.13913","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142212528","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Sebastian Seibold, Tobias Richter, Lisa Geres, Rupert Seidl, Ralph Martin, Oliver Mitesser, Cornelius Senf, Lukas Griem, Jörg Müller
{"title":"Soundscapes and airborne laser scanning identify vegetation density and its interaction with elevation as main driver of bird diversity and community composition","authors":"Sebastian Seibold, Tobias Richter, Lisa Geres, Rupert Seidl, Ralph Martin, Oliver Mitesser, Cornelius Senf, Lukas Griem, Jörg Müller","doi":"10.1111/ddi.13905","DOIUrl":"10.1111/ddi.13905","url":null,"abstract":"<div>\u0000 \u0000 \u0000 <section>\u0000 \u0000 <h3> Aim</h3>\u0000 \u0000 <p>Mountain ecosystems are hotspots of biodiversity due to their high variation in climate and habitats. Yet, above average rates of climate change and enhanced forest disturbance regimes alter local climatic conditions and vegetation structure, which should impact biodiversity. We here investigated the impact of vegetation and elevation as well as their interactions on bird communities to improve our ability to predict climate change effects on bird communities.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Location</h3>\u0000 \u0000 <p>European Alps, Germany.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Methods</h3>\u0000 \u0000 <p>We studied patterns and drivers of bird communities at 213 plots along gradients in vegetation density and elevation using autonomous sound recorders. Bird species were identified from soundscapes by Convolutional Neural Networks (BirdNET) and taxonomists.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Results</h3>\u0000 \u0000 <p>Bird diversity and community metrics were moderately to strongly correlated for data based on either identification by BirdNET or taxonomists (Pearson's <i>r</i> = .47–.94), and ecological findings were overall similar for both datasets. Vegetation density 1–2 m and >2 m above ground strongly affected bird diversity and community composition and mediated effects of elevation. Community composition changed with elevation more strongly in habitats with low than high vegetation density >2 m. Species numbers decreased with elevation in habitats with low vegetation density 1–2 m and >2 m above ground, but increased in habitats with high vegetation density. Overall, functional and phylogenetic diversity increased with elevation indicating lower habitat filtering, but patterns were also mediated by vegetation density.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Main Conclusions</h3>\u0000 \u0000 <p>Our results indicate that bird communities in the German Alps are determined by strong interactive effects of elevation and vegetation, underlining the importance to consider variation in vegetation in studies of biodiversity patterns along elevational gradients and under climate change. Combining remote sensing data and biodiversity monitoring based on autonomous sampling and AI-based species identification opens new avenues for bird monitoring and research in remote areas.</p>\u0000 </section>\u0000 </div>","PeriodicalId":51018,"journal":{"name":"Diversity and Distributions","volume":"30 12","pages":""},"PeriodicalIF":4.6,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/ddi.13905","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142212538","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}