Computational Geometry-Theory and Applications最新文献

筛选
英文 中文
Any platonic solid can transform to another by O(1) refoldings 任何柏拉图式的固体都可以通过O(1)重折叠转化为另一个
IF 0.6 4区 计算机科学
Computational Geometry-Theory and Applications Pub Date : 2023-08-01 DOI: 10.1016/j.comgeo.2023.101995
Erik D. Demaine, Martin L. Demaine, Yevhenii Diomidov, Tonan Kamata, Ryuhei Uehara, Hanyu Alice Zhang
{"title":"Any platonic solid can transform to another by O(1) refoldings","authors":"Erik D. Demaine,&nbsp;Martin L. Demaine,&nbsp;Yevhenii Diomidov,&nbsp;Tonan Kamata,&nbsp;Ryuhei Uehara,&nbsp;Hanyu Alice Zhang","doi":"10.1016/j.comgeo.2023.101995","DOIUrl":"https://doi.org/10.1016/j.comgeo.2023.101995","url":null,"abstract":"<div><p><span>We show that several classes of polyhedra are joined by a sequence of </span><span><math><mi>O</mi><mo>(</mo><mn>1</mn><mo>)</mo></math></span><span> refolding steps, where each refolding step unfolds the current polyhedron (allowing cuts anywhere on the surface and allowing overlap) and folds that unfolding into exactly the next polyhedron; in other words, a polyhedron is refoldable into another polyhedron if they share a common unfolding. Specifically, assuming equal surface area, we prove that (1) any two tetramonohedra are refoldable to each other, (2) any doubly covered triangle is refoldable to a tetramonohedron, (3) any (augmented) regular prismatoid and doubly covered regular polygon<span> is refoldable to a tetramonohedron, (4) any tetrahedron<span> has a 3-step refolding sequence to a tetramonohedron, and (5) the regular dodecahedron<span> has a 4-step refolding sequence to a tetramonohedron. In particular, we obtain a ≤6-step refolding sequence between any pair of Platonic solids, applying (5) for the dodecahedron and (1) and/or (2) for all other Platonic solids. As far as the authors know, this is the first result about common unfolding involving the regular dodecahedron.</span></span></span></span></p></div>","PeriodicalId":51001,"journal":{"name":"Computational Geometry-Theory and Applications","volume":null,"pages":null},"PeriodicalIF":0.6,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49845788","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Geometric dominating-set and set-cover via local-search 基于局部搜索的几何支配集和集合覆盖
IF 0.6 4区 计算机科学
Computational Geometry-Theory and Applications Pub Date : 2023-08-01 DOI: 10.1016/j.comgeo.2023.102007
Minati De , Abhiruk Lahiri
{"title":"Geometric dominating-set and set-cover via local-search","authors":"Minati De ,&nbsp;Abhiruk Lahiri","doi":"10.1016/j.comgeo.2023.102007","DOIUrl":"https://doi.org/10.1016/j.comgeo.2023.102007","url":null,"abstract":"<div><p>In this paper, we study two classic optimization problems<span>: minimum geometric dominating set and set cover. In the dominating-set problem, for a given set of objects in the plane as input, the objective is to choose a minimum number of input objects such that every input object is dominated by the chosen set of objects. Here, we say that one object is dominated by another if their intersection is nonempty. For the second problem, for a given set of points and objects in the plane, the objective is to choose a minimum number of objects to cover all the points. This is a particular version of the set-cover problem.</span></p><p>Both problems have been well-studied, subject to various restrictions on the input objects. These problems are <span><math><mi>APX</mi></math></span><span>-hard for object sets consisting of axis-parallel rectangles, ellipses, </span><em>α</em><span>-fat objects of constant description complexity, and convex polygons. On the other hand, </span><span><math><mi>PTAS</mi></math></span><span>s (polynomial time approximation schemes) are known for object sets consisting of disks or unit squares. Surprisingly, a </span><span><math><mi>PTAS</mi></math></span> was unknown even for arbitrary squares. For both problems obtaining a <span><math><mi>PTAS</mi></math></span> remains open for a large class of objects.</p><p>For the dominating-set problem, we prove that a popular local-search algorithm leads to a <span><math><mo>(</mo><mn>1</mn><mo>+</mo><mi>ε</mi><mo>)</mo></math></span> approximation for a family of homothets of a convex object (which includes arbitrary squares, <em>k</em><span>-regular polygons, translated and scaled copies of a convex set, etc.) in </span><span><math><msup><mrow><mi>n</mi></mrow><mrow><mi>O</mi><mo>(</mo><mn>1</mn><mo>/</mo><msup><mrow><mi>ε</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo></mrow></msup></math></span> time. On the other hand, the same approach leads to a <span><math><mi>PTAS</mi></math></span><span> for the geometric covering problem<span> when the objects are convex pseudodisks (which include disks, unit height rectangles, homothetic convex objects, etc.). Consequently, we obtain an easy-to-implement approximation algorithm for both problems for a large class of objects, significantly improving the best-known approximation guarantees.</span></span></p></div>","PeriodicalId":51001,"journal":{"name":"Computational Geometry-Theory and Applications","volume":null,"pages":null},"PeriodicalIF":0.6,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49882871","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 5
Straight-line drawings of 1-planar graphs 1-平面图的直线图
IF 0.6 4区 计算机科学
Computational Geometry-Theory and Applications Pub Date : 2023-07-04 DOI: 10.1016/j.comgeo.2023.102036
Franz J. Brandenburg
{"title":"Straight-line drawings of 1-planar graphs","authors":"Franz J. Brandenburg","doi":"10.1016/j.comgeo.2023.102036","DOIUrl":"https://doi.org/10.1016/j.comgeo.2023.102036","url":null,"abstract":"<div><p>A graph is 1-planar if it can be drawn in the plane such that each edge is crossed at most once. However, there are 1-planar graphs that do not admit a straight-line 1-planar drawing. We show that every 1-planar graph has a straight-line drawing with a two-coloring of the edges such that edges of the same color do not cross. Thus 1-planar graphs have geometric thickness two. In addition, the drawing is nearly 1-planar, that is, it is 1-planar if all fan-crossed edges are removed. An edge is fan-crossed if it is crossed by edges with a common vertex if it is crossed more than twice. The drawing algorithm uses high precision arithmetic with numbers with <span><math><mi>O</mi><mo>(</mo><mi>n</mi><mi>log</mi><mo>⁡</mo><mi>n</mi><mo>)</mo></math></span> digits and computes the straight-line drawing from a 1-planar drawing in linear time on a real RAM.</p></div>","PeriodicalId":51001,"journal":{"name":"Computational Geometry-Theory and Applications","volume":null,"pages":null},"PeriodicalIF":0.6,"publicationDate":"2023-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49846967","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Edge-unfolding nested prismatoids 边展开嵌套棱柱体
IF 0.6 4区 计算机科学
Computational Geometry-Theory and Applications Pub Date : 2023-06-28 DOI: 10.1016/j.comgeo.2023.102033
Manuel Radons
{"title":"Edge-unfolding nested prismatoids","authors":"Manuel Radons","doi":"10.1016/j.comgeo.2023.102033","DOIUrl":"https://doi.org/10.1016/j.comgeo.2023.102033","url":null,"abstract":"<div><p>A 3-prismatoid is the convex hull of two convex polygons <em>A</em> and <em>B</em> which lie in parallel planes <span><math><msub><mrow><mi>H</mi></mrow><mrow><mi>A</mi></mrow></msub><mo>,</mo><msub><mrow><mi>H</mi></mrow><mrow><mi>B</mi></mrow></msub><mo>⊂</mo><msup><mrow><mi>R</mi></mrow><mrow><mn>3</mn></mrow></msup></math></span>. Let <span><math><mover><mrow><mi>A</mi></mrow><mrow><mo>˜</mo></mrow></mover></math></span> be the orthogonal projection of <em>A</em> onto <span><math><msub><mrow><mi>H</mi></mrow><mrow><mi>B</mi></mrow></msub></math></span>. A 3-prismatoid is called nested if <span><math><mover><mrow><mi>A</mi></mrow><mrow><mo>˜</mo></mrow></mover></math></span> is properly contained in <em>B</em>, or vice versa. We show that every nested 3-prismatoid has an edge-unfolding to a non-overlapping polygon in the plane.</p></div>","PeriodicalId":51001,"journal":{"name":"Computational Geometry-Theory and Applications","volume":null,"pages":null},"PeriodicalIF":0.6,"publicationDate":"2023-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49804594","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Approximating Gromov-Hausdorff distance in Euclidean space 欧氏空间中Gromov-Hausdorff距离的逼近
IF 0.6 4区 计算机科学
Computational Geometry-Theory and Applications Pub Date : 2023-06-24 DOI: 10.1016/j.comgeo.2023.102034
Sushovan Majhi , Jeffrey Vitter , Carola Wenk
{"title":"Approximating Gromov-Hausdorff distance in Euclidean space","authors":"Sushovan Majhi ,&nbsp;Jeffrey Vitter ,&nbsp;Carola Wenk","doi":"10.1016/j.comgeo.2023.102034","DOIUrl":"https://doi.org/10.1016/j.comgeo.2023.102034","url":null,"abstract":"<div><p>The Gromov-Hausdorff distance <span><math><mo>(</mo><msub><mrow><mi>d</mi></mrow><mrow><mi>G</mi><mi>H</mi></mrow></msub><mo>)</mo></math></span> proves to be a useful distance measure between shapes. In order to approximate <span><math><msub><mrow><mi>d</mi></mrow><mrow><mi>G</mi><mi>H</mi></mrow></msub></math></span> for <span><math><mi>X</mi><mo>,</mo><mi>Y</mi><mo>⊂</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>d</mi></mrow></msup></math></span>, we look into its relationship with <span><math><msub><mrow><mi>d</mi></mrow><mrow><mi>H</mi><mo>,</mo><mi>i</mi><mi>s</mi><mi>o</mi></mrow></msub></math></span>, the infimum Hausdorff distance under Euclidean isometries. As already known for dimension <span><math><mi>d</mi><mo>≥</mo><mn>2</mn></math></span>, <span><math><msub><mrow><mi>d</mi></mrow><mrow><mi>H</mi><mo>,</mo><mi>i</mi><mi>s</mi><mi>o</mi></mrow></msub></math></span> cannot be bounded above by a constant factor times <span><math><msub><mrow><mi>d</mi></mrow><mrow><mi>G</mi><mi>H</mi></mrow></msub></math></span>. For <span><math><mi>d</mi><mo>=</mo><mn>1</mn></math></span>, however, we prove that <span><math><msub><mrow><mi>d</mi></mrow><mrow><mi>H</mi><mo>,</mo><mi>i</mi><mi>s</mi><mi>o</mi></mrow></msub><mo>≤</mo><mfrac><mrow><mn>5</mn></mrow><mrow><mn>4</mn></mrow></mfrac><msub><mrow><mi>d</mi></mrow><mrow><mi>G</mi><mi>H</mi></mrow></msub></math></span>. We also show that the bound is tight. In effect, for <span><math><mi>X</mi><mo>,</mo><mi>Y</mi><mo>⊂</mo><mi>R</mi></math></span> with at most <em>n</em> points, this gives rise to an <span><math><mi>O</mi><mo>(</mo><mi>n</mi><mi>log</mi><mo>⁡</mo><mi>n</mi><mo>)</mo></math></span>-time algorithm to approximate <span><math><msub><mrow><mi>d</mi></mrow><mrow><mi>G</mi><mi>H</mi></mrow></msub><mo>(</mo><mi>X</mi><mo>,</mo><mi>Y</mi><mo>)</mo></math></span> with an approximation factor of <span><math><mo>(</mo><mn>1</mn><mo>+</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>4</mn></mrow></mfrac><mo>)</mo></math></span>.</p></div>","PeriodicalId":51001,"journal":{"name":"Computational Geometry-Theory and Applications","volume":null,"pages":null},"PeriodicalIF":0.6,"publicationDate":"2023-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49804595","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 10
From trees to barcodes and back again II: Combinatorial and probabilistic aspects of a topological inverse problem 从树到条形码再回来II:拓扑逆问题的组合和概率方面
IF 0.6 4区 计算机科学
Computational Geometry-Theory and Applications Pub Date : 2023-06-22 DOI: 10.1016/j.comgeo.2023.102031
Justin Curry, Jordan DeSha, Adélie Garin, Kathryn Hess, Lida Kanari, Brendan Mallery
{"title":"From trees to barcodes and back again II: Combinatorial and probabilistic aspects of a topological inverse problem","authors":"Justin Curry,&nbsp;Jordan DeSha,&nbsp;Adélie Garin,&nbsp;Kathryn Hess,&nbsp;Lida Kanari,&nbsp;Brendan Mallery","doi":"10.1016/j.comgeo.2023.102031","DOIUrl":"https://doi.org/10.1016/j.comgeo.2023.102031","url":null,"abstract":"<div><p>In this paper we consider two aspects of the inverse problem of how to construct merge trees realizing a given barcode. Much of our investigation exploits a recently discovered connection between the symmetric group and barcodes in general position, based on the simple observation that death order is a permutation of birth order. We show how to lift this combinatorial characterization of barcodes to an analogous combinatorialization of merge trees. As result of this study, we provide the first clear combinatorial distinction between the space of phylogenetic trees (as defined by Billera, Holmes and Vogtmann) and the space of merge trees: generic phylogenetic trees on <span><math><mi>n</mi><mo>+</mo><mn>1</mn></math></span> leaf nodes fall into <span><math><mo>(</mo><mn>2</mn><mi>n</mi><mo>−</mo><mn>1</mn><mo>)</mo><mo>!</mo><mo>!</mo></math></span> distinct equivalence classes, but the analogous number for merge trees is equal to the number of maximal chains in the lattice of partitions, i.e., <span><math><mo>(</mo><mi>n</mi><mo>+</mo><mn>1</mn><mo>)</mo><mo>!</mo><mi>n</mi><mo>!</mo><msup><mrow><mn>2</mn></mrow><mrow><mo>−</mo><mi>n</mi></mrow></msup></math></span>. The second aspect of our study is the derivation of precise formulas for the distribution of tree realization numbers (the number of merge trees realizing a given barcode) when we assume that barcodes are sampled using a uniform distribution on the symmetric group. We are able to characterize some of the higher moments of this distribution, thanks in part to a reformulation of our distribution in terms of Dirichlet convolution. This characterization provides a type of null hypothesis, apparently different from the distributions observed in real neuron data, which opens the door to doing more precise statistics and science.</p></div>","PeriodicalId":51001,"journal":{"name":"Computational Geometry-Theory and Applications","volume":null,"pages":null},"PeriodicalIF":0.6,"publicationDate":"2023-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49846968","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 8
Density of triangulated ternary disc packings 三角形三元圆盘填料的密度
IF 0.6 4区 计算机科学
Computational Geometry-Theory and Applications Pub Date : 2023-06-20 DOI: 10.1016/j.comgeo.2023.102032
Thomas Fernique , Daria Pchelina
{"title":"Density of triangulated ternary disc packings","authors":"Thomas Fernique ,&nbsp;Daria Pchelina","doi":"10.1016/j.comgeo.2023.102032","DOIUrl":"https://doi.org/10.1016/j.comgeo.2023.102032","url":null,"abstract":"<div><p>We consider <em>ternary</em> disc packings of the plane, i.e. the packings using discs of three different radii. Packings in which each “hole” is bounded by three pairwise tangent discs are called <em>triangulated</em>. There are 164 pairs <span><math><mo>(</mo><mi>r</mi><mo>,</mo><mi>s</mi><mo>)</mo></math></span>, <span><math><mn>1</mn><mo>&gt;</mo><mi>r</mi><mo>&gt;</mo><mi>s</mi></math></span>, allowing triangulated packings by discs of radii 1, <em>r</em> and <em>s</em>. In this paper, we enhance existing methods of dealing with maximal-density packings in order to find ternary triangulated packings which maximize the density among all the packings with the same disc radii. We showed for 16 pairs that the density is maximized by a triangulated ternary packing; for 16 other pairs, we proved the density to be maximized by a triangulated packing using only two sizes of discs; for 45 pairs, we found non-triangulated packings strictly denser than any triangulated one; finally, we classified the remaining cases where our methods are not applicable.</p></div>","PeriodicalId":51001,"journal":{"name":"Computational Geometry-Theory and Applications","volume":null,"pages":null},"PeriodicalIF":0.6,"publicationDate":"2023-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49791317","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Range updates and range sum queries on multidimensional points with monoid weights 一维点上的值域更新和值域和查询
IF 0.6 4区 计算机科学
Computational Geometry-Theory and Applications Pub Date : 2023-06-15 DOI: 10.1016/j.comgeo.2023.102030
Shangqi Lu, Yufei Tao
{"title":"Range updates and range sum queries on multidimensional points with monoid weights","authors":"Shangqi Lu,&nbsp;Yufei Tao","doi":"10.1016/j.comgeo.2023.102030","DOIUrl":"https://doi.org/10.1016/j.comgeo.2023.102030","url":null,"abstract":"<div><p>Let <em>P</em> be a set of <em>n</em> points in <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>d</mi></mrow></msup></math></span> where each point <span><math><mi>p</mi><mo>∈</mo><mi>P</mi></math></span> carries a <em>weight</em><span> drawn from a commutative monoid </span><span><math><mo>(</mo><mi>M</mi><mo>,</mo><mo>+</mo><mo>,</mo><mn>0</mn><mo>)</mo></math></span>. Given a <em>d</em>-rectangle <span><math><msub><mrow><mi>r</mi></mrow><mrow><mi>upd</mi></mrow></msub></math></span> (i.e., an orthogonal rectangle in <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>d</mi></mrow></msup></math></span>) and a value <span><math><mi>Δ</mi><mo>∈</mo><mi>M</mi></math></span>, a <em>range update</em> adds Δ to the weight of every point <span><math><mi>p</mi><mo>∈</mo><mi>P</mi><mo>∩</mo><msub><mrow><mi>r</mi></mrow><mrow><mi>upd</mi></mrow></msub></math></span>; given a <em>d</em>-rectangle <span><math><msub><mrow><mi>r</mi></mrow><mrow><mi>qry</mi></mrow></msub></math></span>, a <em>range sum query</em> returns the total weight of the points in <span><math><mi>P</mi><mo>∩</mo><msub><mrow><mi>r</mi></mrow><mrow><mi>qry</mi></mrow></msub></math></span>. The goal is to store <em>P</em> in a structure to support updates and queries with attractive performance guarantees. We describe a structure of <span><math><mover><mrow><mi>O</mi></mrow><mrow><mo>˜</mo></mrow></mover><mo>(</mo><mi>n</mi><mo>)</mo></math></span> space that handles an update in <span><math><mover><mrow><mi>O</mi></mrow><mrow><mo>˜</mo></mrow></mover><mo>(</mo><msub><mrow><mi>T</mi></mrow><mrow><mi>upd</mi></mrow></msub><mo>)</mo></math></span> time and a query in <span><math><mover><mrow><mi>O</mi></mrow><mrow><mo>˜</mo></mrow></mover><mo>(</mo><msub><mrow><mi>T</mi></mrow><mrow><mi>qry</mi></mrow></msub><mo>)</mo></math></span> time for arbitrary functions <span><math><msub><mrow><mi>T</mi></mrow><mrow><mi>upd</mi></mrow></msub><mo>(</mo><mi>n</mi><mo>)</mo></math></span> and <span><math><msub><mrow><mi>T</mi></mrow><mrow><mi>qry</mi></mrow></msub><mo>(</mo><mi>n</mi><mo>)</mo></math></span> satisfying <span><math><msub><mrow><mi>T</mi></mrow><mrow><mi>upd</mi></mrow></msub><mo>⋅</mo><msub><mrow><mi>T</mi></mrow><mrow><mi>qry</mi></mrow></msub><mo>=</mo><mi>n</mi></math></span>. The result holds for any fixed dimensionality <span><math><mi>d</mi><mo>≥</mo><mn>2</mn></math></span><span>. Our query-update tradeoff is tight up to a polylog factor subject to the OMv-conjecture.</span></p></div>","PeriodicalId":51001,"journal":{"name":"Computational Geometry-Theory and Applications","volume":null,"pages":null},"PeriodicalIF":0.6,"publicationDate":"2023-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49791615","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Half-plane point retrieval queries with independent and dependent geometric uncertainties 具有独立和依赖几何不确定性的半平面点检索查询
IF 0.6 4区 计算机科学
Computational Geometry-Theory and Applications Pub Date : 2023-06-12 DOI: 10.1016/j.comgeo.2023.102021
Rivka Gitik, Leo Joskowicz
{"title":"Half-plane point retrieval queries with independent and dependent geometric uncertainties","authors":"Rivka Gitik,&nbsp;Leo Joskowicz","doi":"10.1016/j.comgeo.2023.102021","DOIUrl":"https://doi.org/10.1016/j.comgeo.2023.102021","url":null,"abstract":"<div><p>This paper addresses a family of geometric half-plane retrieval queries of points in the plane in the presence of geometric uncertainty. The problems include exact and uncertain point sets and half-plane queries defined by an exact or uncertain line whose location uncertainties are independent or dependent and are defined by <em>k</em><span><span><span> real-valued parameters. Point coordinate uncertainties are modeled with the Linear Parametric Geometric Uncertainty Model (LPGUM), an expressive and computationally efficient worst-case, first order linear </span>approximation of geometric uncertainty that supports parametric dependencies between </span>point locations. We present an efficient </span><span><math><mi>O</mi><mrow><mo>(</mo><msup><mrow><mi>k</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo></mrow></math></span> time and space algorithm for computing the envelope of the LPGUM line that defines the half-plane query. For an exact line and an LPGUM <em>n</em> points set, we present an <span><math><mi>O</mi><mrow><mo>(</mo><mi>log</mi><mo>⁡</mo><mi>n</mi><mi>k</mi><mo>+</mo><mi>m</mi><mi>k</mi><mo>)</mo></mrow></math></span> time query and <span><math><mi>O</mi><mrow><mo>(</mo><mi>n</mi><mi>k</mi><mo>)</mo></mrow></math></span> space algorithm, where <em>m</em> is the number of LPGUM points on or above the half-plane line. For a LPGUM line and an exact points set, we present a <span><math><mi>O</mi><mrow><mo>(</mo><msup><mrow><mi>k</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>+</mo><mfrac><mrow><mo>(</mo><mi>k</mi><mi>log</mi><mo>⁡</mo><mi>n</mi><mi>log</mi><mo>⁡</mo><mi>log</mi><mo>⁡</mo><mi>n</mi><mo>)</mo></mrow><mrow><mi>ε</mi></mrow></mfrac><mo>+</mo><mi>m</mi><mo>)</mo></mrow></math></span> time and <span><math><mi>O</mi><mrow><mo>(</mo><mfrac><mrow><msup><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow><mrow><mi>log</mi><mo>⁡</mo><mi>n</mi></mrow></mfrac><mo>+</mo><mfrac><mrow><mi>k</mi></mrow><mrow><mi>ε</mi></mrow></mfrac><mo>)</mo></mrow></math></span><span> space approximation algorithm, where </span><span><math><mn>0</mn><mo>&lt;</mo><mi>ε</mi><mo>≤</mo><mn>1</mn></math></span> is the desired approximation error. For a LPGUM line and an LPGUM points set, we present two <span><math><mi>O</mi><mrow><mo>(</mo><msup><mrow><mi>k</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>+</mo><mfrac><mrow><mo>(</mo><mi>k</mi><mi>log</mi><mo>⁡</mo><mi>n</mi><mi>k</mi><mi>log</mi><mo>⁡</mo><mi>log</mi><mo>⁡</mo><mi>n</mi><mi>k</mi><mo>)</mo></mrow><mrow><mi>ε</mi></mrow></mfrac><mo>+</mo><mi>m</mi><mi>k</mi><mo>)</mo></mrow></math></span> and <span><math><mi>O</mi><mrow><mo>(</mo><mi>m</mi><msup><mrow><mi>k</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>+</mo><mfrac><mrow><mo>(</mo><mi>k</mi><mi>log</mi><mo>⁡</mo><mi>n</mi><mi>k</mi><mi>log</mi><mo>⁡</mo><mi>log</mi><mo>⁡</mo><mi>n</mi><mi>k</mi><mo>)</mo></mrow><mrow><mi>ε</mi></mrow></mfrac><mo>)</mo></mrow></math></span> time query and <span><math><mi>O</mi><mrow><mo>(</mo><m","PeriodicalId":51001,"journal":{"name":"Computational Geometry-Theory and Applications","volume":null,"pages":null},"PeriodicalIF":0.6,"publicationDate":"2023-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49791616","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Angles of arc-polygons and Lombardi drawings of cacti 弧多边形的角度与仙人掌的Lombardi绘画
IF 0.6 4区 计算机科学
Computational Geometry-Theory and Applications Pub Date : 2023-06-01 DOI: 10.1016/j.comgeo.2023.101982
David Eppstein, Daniel Frishberg, Martha C. Osegueda
{"title":"Angles of arc-polygons and Lombardi drawings of cacti","authors":"David Eppstein,&nbsp;Daniel Frishberg,&nbsp;Martha C. Osegueda","doi":"10.1016/j.comgeo.2023.101982","DOIUrl":"https://doi.org/10.1016/j.comgeo.2023.101982","url":null,"abstract":"<div><p>We characterize the triples of interior angles that are possible in non-self-crossing triangles with circular-arc sides, and we prove that a given cyclic sequence of angles can be realized by a non-self-crossing polygon with circular-arc sides whenever all angles are ≤<em>π</em>. As a consequence of these results, we prove that every cactus has a planar Lombardi drawing (a drawing with edges depicted as circular arcs, meeting at equal angles at each vertex) for its natural embedding in which every cycle of the cactus is a face of the drawing. However, there exist planar embeddings of cacti that do not have planar Lombardi drawings.</p></div>","PeriodicalId":51001,"journal":{"name":"Computational Geometry-Theory and Applications","volume":null,"pages":null},"PeriodicalIF":0.6,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49795350","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信