Maximum-width rainbow-bisecting empty annulus

IF 0.4 4区 计算机科学 Q4 MATHEMATICS
Sang Won Bae , Sandip Banerjee , Arpita Baral , Priya Ranjan Sinha Mahapatra , Sang Duk Yoon
{"title":"Maximum-width rainbow-bisecting empty annulus","authors":"Sang Won Bae ,&nbsp;Sandip Banerjee ,&nbsp;Arpita Baral ,&nbsp;Priya Ranjan Sinha Mahapatra ,&nbsp;Sang Duk Yoon","doi":"10.1016/j.comgeo.2024.102088","DOIUrl":null,"url":null,"abstract":"<div><p>Given a set of <em>n</em> colored points with <em>k</em> colors in the plane, we study the problem of computing a maximum-width rainbow-bisecting empty annulus (of objects specifically axis-parallel square, axis-parallel rectangle and circle) problem. We call a region <em>rainbow</em> if it contains at least one point of each color. The maximum-width rainbow-bisecting empty annulus problem asks to find an annulus <em>A</em> of a particular shape with maximum possible width such that <em>A</em> does not contain any input points and it bisects the input point set into two parts, each of which is a <em>rainbow</em>. We compute a maximum-width rainbow-bisecting empty axis-parallel square, axis-parallel rectangular and circular annulus in <span><math><mi>O</mi><mo>(</mo><msup><mrow><mi>n</mi></mrow><mrow><mn>3</mn></mrow></msup><mo>)</mo></math></span> time using <span><math><mi>O</mi><mo>(</mo><mi>n</mi><mo>)</mo></math></span> space, in <span><math><mi>O</mi><mo>(</mo><msup><mrow><mi>k</mi></mrow><mrow><mn>2</mn></mrow></msup><msup><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></msup><mi>log</mi><mo>⁡</mo><mi>n</mi><mo>)</mo></math></span> time using <span><math><mi>O</mi><mo>(</mo><mi>n</mi><mi>log</mi><mo>⁡</mo><mi>n</mi><mo>)</mo></math></span> space and in <span><math><mi>O</mi><mo>(</mo><msup><mrow><mi>n</mi></mrow><mrow><mn>3</mn></mrow></msup><mo>)</mo></math></span> time using <span><math><mi>O</mi><mo>(</mo><msup><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo></math></span> space respectively.</p></div>","PeriodicalId":51001,"journal":{"name":"Computational Geometry-Theory and Applications","volume":null,"pages":null},"PeriodicalIF":0.4000,"publicationDate":"2024-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Geometry-Theory and Applications","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0925772124000105","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Given a set of n colored points with k colors in the plane, we study the problem of computing a maximum-width rainbow-bisecting empty annulus (of objects specifically axis-parallel square, axis-parallel rectangle and circle) problem. We call a region rainbow if it contains at least one point of each color. The maximum-width rainbow-bisecting empty annulus problem asks to find an annulus A of a particular shape with maximum possible width such that A does not contain any input points and it bisects the input point set into two parts, each of which is a rainbow. We compute a maximum-width rainbow-bisecting empty axis-parallel square, axis-parallel rectangular and circular annulus in O(n3) time using O(n) space, in O(k2n2logn) time using O(nlogn) space and in O(n3) time using O(n2) space respectively.

最大宽度彩虹分光空环
给定平面上 k 种颜色的 n 个彩色点的集合,我们研究的是计算最大宽度彩虹等分线空环面(对象具体为轴平行的正方形、轴平行的矩形和圆形)问题。如果一个区域至少包含每种颜色的一个点,我们就称该区域为彩虹区域。最大宽度彩虹分叉空环问题要求找到一个特定形状的最大宽度环 A,使得 A 不包含任何输入点,并且将输入点集一分为二,每一部分都是彩虹。我们使用 O(n) 空间在 O(n3) 时间内、使用 O(nlogn) 空间在 O(k2n2logn) 时间内以及使用 O(n2) 空间在 O(n3) 时间内分别计算出了最大宽度的彩虹分叉空轴平行正方形、轴平行矩形和圆形环面。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.60
自引率
16.70%
发文量
43
审稿时长
>12 weeks
期刊介绍: Computational Geometry is a forum for research in theoretical and applied aspects of computational geometry. The journal publishes fundamental research in all areas of the subject, as well as disseminating information on the applications, techniques, and use of computational geometry. Computational Geometry publishes articles on the design and analysis of geometric algorithms. All aspects of computational geometry are covered, including the numerical, graph theoretical and combinatorial aspects. Also welcomed are computational geometry solutions to fundamental problems arising in computer graphics, pattern recognition, robotics, image processing, CAD-CAM, VLSI design and geographical information systems. Computational Geometry features a special section containing open problems and concise reports on implementations of computational geometry tools.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信